Publications by authors named "Robert Dietrich"

17 Publications

  • Page 1 of 1

A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici.

PLoS Pathog 2019 12 20;15(12):e1007780. Epub 2019 Dec 20.

Syngenta Crop Protection AG, Stein, Switzerland.

Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used for the control of a broad range of fungal diseases. This has been the most rapidly expanding fungicide group in terms of new molecules discovered and introduced for agricultural use over the past fifteen years. A particular pattern of differential sensitivity (resistance) to the stretched heterocycle amide SDHIs (SHA-SDHIs), a subclass of chemically-related SDHIs, was observed in naïve Zymoseptoria tritici populations not previously exposed to these chemicals. Subclass-specific resistance was confirmed at the enzyme level but did not correlate with the genotypes of the succinate dehydrogenase (SDH) encoding genes. Mapping and characterization of the molecular mechanisms responsible for standing SHA-SDHI resistance in natural field isolates identified a gene paralog of SDHC, termed ZtSDHC3, which encodes for an alternative C subunit of succinate dehydrogenase, named alt-SDHC. Using reverse genetics, we showed that alt-SDHC associates with the three other SDH subunits, leading to a fully functional enzyme and that a unique Qp-site residue within the alt-SDHC protein confers SHA-SDHI resistance. Enzymatic assays, computational modelling and docking simulations for the two SQR enzymes (altC-SQR, WT_SQR) enabled us to describe enzyme-inhibitor interactions at an atomistic level and to propose rational explanations for differential potency and resistance across SHA-SDHIs. European Z. tritici populations displayed a presence (20-30%) / absence polymorphism of ZtSDHC3, as well as differences in ZtSDHC3 expression levels and splicing efficiency. These polymorphisms have a strong impact on SHA-SDHI resistance phenotypes. Characterization of the ZtSDHC3 promoter in European Z. tritici populations suggests that transposon insertions are associated with the strongest resistance phenotypes. These results establish that a dispensable paralogous gene determines SHA-SDHIs fungicide resistance in natural populations of Z. tritici. This study paves the way to an increased awareness of the role of fungicidal target paralogs in resistance to fungicides and demonstrates the paramount importance of population genomics in fungicide discovery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1007780DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941823PMC
December 2019

Anilinopyrimidine Resistance in Is Linked to Mitochondrial Function.

Front Microbiol 2017 30;8:2361. Epub 2017 Nov 30.

Syngenta Crop Protection AG, Stein, Switzerland.

Crop protection anilinopyrimidine (AP) fungicides were introduced more than 20 years ago for the control of a range of diseases caused by ascomycete plant pathogens, and in particular for the control of gray mold caused by . Although early mode of action studies suggested an inhibition of methionine biosynthesis, the molecular target of this class of fungicides was never fully clarified. Despite AP-specific resistance having been described in . field isolates and in multiple other targeted species, the underlying resistance mechanisms were unknown. It was therefore expected that the genetic characterization of resistance mechanisms would permit the identification of the molecular target of these fungicides. In order to explore the widest range of possible resistance mechanisms, AP-resistant . UV laboratory mutants were generated and the mutations conferring resistance were determined by combining whole-genome sequencing and reverse genetics. Genetic mapping from a cross between a resistant field isolate and a sensitive reference isolate was used in parallel and led to the identification of an additional molecular determinant not found from the characterized UV mutant collection. Together, these two approaches enabled the characterization of an unrivaled diversity of resistance mechanisms. In total, we report the elucidation of resistance-conferring mutations within nine individual genes, two of which are responsible for almost all instances of AP resistance in the field. All identified resistance-conferring genes encode proteins that are involved in mitochondrial processes, suggesting that APs primarily target the mitochondria. The functions of these genes and their possible interactions are discussed in the context of the potential mode of action for this important class of fungicides.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2017.02361DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714876PMC
November 2017

The interplay of electrode- and bio-materials in a redox-cycling-based clozapine sensor.

Electrochem commun 2017 Jun 13;79:33-36. Epub 2017 Apr 13.

MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, United States.

We investigate gold, TiN, and platinum in combination with a chitosan-catechol-based redox-cycling system (RCS) for electrochemical detection of the antipsychotic clozapine. We have previously demonstrated the RCS for detection of clozapine in serum, but challenges remain regarding low signal-to-noise ratios. This can be mitigated by selection of electrode materials with beneficial surface morphologies and/or compositions. We employ cyclic voltammetry to assess the redox current generated by clozapine, and differentiate solely surface-area-based effects from clozapine-specific ones using a standard redox couple. We find that nano- and microstructured platinum greatly amplifies the clozapine signal compared to gold (up to 1490-fold for platinum black). However, the material performs poorly in the presence of chloride ions, and RCS modification provides no further amplification. The RCS combined with atomic-layer-deposited (ALD) TiN, on the other hand, increases the signal by 7.54 times, versus 2.86 times for RCS on gold, with a 9.2-fold lower variability, indicating that the homogenous and chemically inert properties of ALD-TiN may make it an ideal electrode material.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.elecom.2017.04.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512729PMC
June 2017

Mesoionic insecticides: a novel class of insecticides that modulate nicotinic acetylcholine receptors.

Pest Manag Sci 2017 Apr 1;73(4):796-806. Epub 2017 Feb 1.

DuPont Crop Protection, Stine-Haskell Research Center, Newark, DE, USA.

Background: As the world population grows towards 9 billion by 2050, it is projected that food production will need to increase by 60%. A critical part of this growth includes the safe and effective use of insecticides to reduce the estimated 20-49% loss of global crop yields owing to pests. The development of new insecticides will help to sustain this protection and overcome insecticide resistance.

Results: A novel class of mesoionic compounds has been discovered, with exceptional insecticidal activity on a range of Hemiptera and Lepidoptera. These compounds bind to the orthosteric site of the nicotinic acetylcholine receptor and result in a highly potent inhibitory action at the receptor with minimal agonism. The synthesis, biological activity, optimization and mode of action will be discussed.

Conclusion: Triflumezopyrim insect control will provide a powerful tool for control of hopper species in rice throughout Asia. Dicloromezotiaz can provide a useful control tool for lepidopteran pests, with an underexploited mode of action among these pests. © 2016 Society of Chemical Industry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.4496DOI Listing
April 2017

Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control.

PLoS Genet 2016 08 11;12(8):e1005876. Epub 2016 Aug 11.

Plant Research International, Wageningen University and Research, Wageningen, The Netherlands.

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1005876DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981457PMC
August 2016

A gapless genome sequence of the fungus Botrytis cinerea.

Mol Plant Pathol 2017 01 9;18(1):75-89. Epub 2016 Jun 9.

Syngenta Crop Protection Münchwilen AG, Crop Protection Research, CH-4332, Stein, Switzerland.

Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, a gapless, near-finished genome sequence for B. cinerea strain B05.10 is reported. The assembly comprised 18 chromosomes and was confirmed by an optical map and a genetic map based on approximately 75 000 single nucleotide polymorphism (SNP) markers. All chromosomes contained fully assembled centromeric regions, and 10 chromosomes had telomeres on both ends. The genetic map consisted of 4153 cM and a comparison of the genetic distances with the physical distances identified 40 recombination hotspots. The linkage map also identified two mutations, located in the previously described genes Bos1 and BcsdhB, that conferred resistance to the fungicides boscalid and iprodione. The genome was predicted to encode 11 701 proteins. RNAseq data from >20 different samples were used to validate and improve gene models. Manual curation of chromosome 1 revealed interesting features, such as the occurrence of a dicistronic transcript and fully overlapping genes in opposite orientations, as well as many spliced antisense transcripts. Manual curation also revealed that the untranslated regions (UTRs) of genes can be complex and long, with many UTRs exceeding lengths of 1 kb and possessing multiple introns. Community annotation is in progress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mpp.12384DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638203PMC
January 2017

Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition.

Plant Physiol 2015 Mar 16;167(3):1158-85. Epub 2015 Jan 16.

Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.).

The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1104/pp.114.255927DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348787PMC
March 2015

Movement of cyantraniliprole in plants after foliar applications and its impact on the control of sucking and chewing insects.

Pest Manag Sci 2015 Mar 27;71(3):395-403. Epub 2014 May 27.

DuPont Crop Protection, Stine Haskell Research Center, Newark, DE, 19711, USA.

Background: Given the physical properties of insecticides, there is often some movement of these compounds within crop plants following foliar application. In this context, movement of two formulations of cyantraniliprole, an anthranilic diamide, was characterized for translocation to new growth, distribution within a leaf and penetration through the leaf cuticle.

Results: Upward movement of cyantraniliprole to new plant growth via the xylem was confirmed using (14) C-radiolabeled cyantraniliprole and from Helicoverpa zea mortality on tomato leaves that had not been directly treated. Within a leaf there was significant acropetal movement (base to apex) of cyantraniliprole, but no significant basipetal movement (apex to base). Translaminar movement, the ability of a compound to penetrate the leaf cuticle, was demonstrated in a variety of plants, both with and without the use of adjuvants, by treating only the adaxial surface of the leaf and measuring control of diamondback moth (Plutella xylostella), green peach aphid (Myzus persicae) and sweetpotato whitefly (Bemisia tabaci) exposed in clip cages to the untreated abaxial surface.

Conclusion: The plant mobility and plant protection of cyantraniliprole is discussed with implications for use in insect resistance management and integrated pest management programs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.3816DOI Listing
March 2015

Discovery and mode of action of afoxolaner, a new isoxazoline parasiticide for dogs.

Vet Parasitol 2014 Apr 14;201(3-4):179-89. Epub 2014 Mar 14.

DuPont Crop Protection, Stine-Haskell Research Center, 1090 Elkton Rd., Newark, DE 19714, United States.

Afoxolaner is an isoxazoline compound characterized by a good safety profile and extended effectiveness against fleas and ticks on dogs following a single oral administration. In vitro membrane feeding assay data and in vivo pharmacokinetic studies in dogs established an afoxolaner blood concentration of 0.1-0.2 μg/ml to be effective against both fleas (Ctenocephalides felis) and ticks (Dermacentor variabilis). Pharmacokinetic profiles in dogs following a 2.5mg/kg oral dosage demonstrated uniform and predictable afoxolaner plasma concentrations above threshold levels required for efficacy for more than one month. Dose ranging and a 5-month multi-dose experimental study in dogs, established that the 2.5mg/kg oral dosage was highly effective against fleas and ticks, and produced predictable and reproducible pharmacokinetics following repeated dosing. Mode of action studies showed that afoxolaner blocked native and expressed insect GABA-gated chloride channels with nanomolar potency. Afoxolaner has comparable potency between wild type channels and channels possessing the A302S (resistance-to-dieldrin) mutation. Lack of cyclodiene cross-resistance for afoxolaner was confirmed in comparative Drosophila toxicity studies, and it is concluded that afoxolaner blocked GABA-gated chloride channels via a site distinct from the cyclodienes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2014.02.020DOI Listing
April 2014

Circulating microRNAs in patients with Shiga-Toxin-producing E. coli O104:H4 induced hemolytic uremic syndrome.

PLoS One 2012 11;7(10):e47215. Epub 2012 Oct 11.

Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany.

Background: In early May 2011, an outbreak of hemorrhagic colitis associated with hemolytic-uremic syndrome (HUS) first developed in Northern Germany and spread to 15 other countries in Europe. The outbreak-strain O104:H4, which combined virulence factors of typical enteroaggregative and Shiga-Toxin-producing E. coli was associated with an unusual high rate of hemolytic uremic syndrome. Also an unexpected high rate of coma and seizures leading to mechanical ventilation and ICU treatment was observed. MicroRNAs are small ribonucleotides orchestrating gene expression. We tested whether circulating microRNAs in serum of HUS patients during the 2011 epidemics are altered in this patient cohort and related to clinical manifestations.

Methodology/principal Findings: We profiled microRNAs using RNA isolated from serum of patients and healthy age-matched controls. The results were validated in 38 patients at baseline, 29 patients during follow-up and 21 age-matched healthy controls by miRNA-specific quantitative RT-PCR. Circulating levels of miR-24, miR-126 were increased in HUS patients versus controls. There was no association between these microRNAs and renal function or the need for renal replacement therapy. In contrast, levels of miR-126 were associated with neurological symptoms at baseline and during follow-up. In addition, miR-126 (on admission) and miR-24 (on admission and during follow-up) were associated with platelet count.

Conclusions/significance: Circulating microRNAs are strongly altered in this patient cohort and associated with neurological symptoms as well as platelet count.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047215PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469502PMC
April 2013

Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.

Plant J 2006 Oct 22;48(1):28-44. Epub 2006 Aug 22.

Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA.

The expression profiles of Botrytis-inoculated Arabidopsis plants were studied to determine the nature of the defense transcriptome and to identify genes involved in host responses to the pathogen. Normally resistant Arabidopsis wild-type plants were compared with coi1, ein2, and nahG plants that are defective in various defense responses and/or show increased susceptibility to Botrytis. In wild-type plants, the expression of 621 genes representing approximately 0.48% of the Arabidopsis transcriptome was induced greater than or equal to twofold after infection. Of these 621 Botrytis-induced genes (BIGs), 462 were induced at or before 36 h post-inoculation, and may be involved in resistance to the pathogen. The expression of 181 BIGs was dependent on a functional COI1 gene required for jasmonate signaling, whereas the expression of 63 and 80 BIGs were dependent on ethylene (ET) signaling or salicylic acid accumulation, respectively, based on results from ein2 and nahG plants. BIGs encode diverse regulatory and structural proteins implicated in pathogen defense and abiotic and oxidative-stress responses. Thirty BIGs encode putative DNA-binding proteins that belong to ET response, zinc-finger, MYB, WRKY, and HD-ZIP family transcription-factor proteins. Fourteen BIGs were studied in detail to determine their role in resistance to Botrytis. T-DNA insertion alleles of ZFAR1 (At2G40140), the gene encoding a putative zinc-finger protein with ankyrin-repeat domains, showed increased local susceptibility to Botrytis and sensitivity to germination in the presence of abscisic acid (ABA), supporting the role of ABA in mediating responses to Botrytis infection. In addition, two independent T-DNA insertion alleles in the WRKY70 gene showed increased susceptibility to Botrytis. The transcriptional activation of genes involved in plant hormone signaling and synthesis, removal of reactive oxygen species, and defense and abiotic-stress responses, coupled with the susceptibility of the wrky70 and zfar1 mutants, highlights the complex genetic network underlying defense responses to Botrytis in Arabidopsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2006.02849.xDOI Listing
October 2006

The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens.

Plant Cell 2006 Jan 9;18(1):257-73. Epub 2005 Dec 9.

Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054, USA.

Plant resistance to disease is controlled by the combination of defense response pathways that are activated depending on the nature of the pathogen. We identified the Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) gene that is transcriptionally regulated by Botrytis cinerea infection. Inactivation of BIK1 causes severe susceptibility to necrotrophic fungal pathogens but enhances resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae pv tomato. The response to an avirulent bacterial strain is unchanged, limiting the role of BIK1 to basal defense rather than race-specific resistance. The jasmonate- and ethylene-regulated defense response, generally associated with resistance to necrotrophic fungi, is attenuated in the bik1 mutant based on the expression of the plant defensin PDF1.2 gene. bik1 mutants show altered root growth, producing more and longer root hairs, demonstrating that BIK1 is also required for normal plant growth and development. Whereas the pathogen responses of bik1 are mostly dependent on salicylic acid (SA) levels, the nondefense responses are independent of SA. BIK1 is membrane-localized, suggesting possible involvement in early stages of the recognition or transduction of pathogen response. Our data suggest that BIK1 modulates the signaling of cellular factors required for defense responses to pathogen infection and normal root hair growth, linking defense response regulation with that of growth and development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1105/tpc.105.035576DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1323497PMC
January 2006

The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.

Plant J 2004 Nov;40(4):558-74

Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.

Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2004.02232.xDOI Listing
November 2004

The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis.

Plant Cell 2003 Nov 10;15(11):2551-65. Epub 2003 Oct 10.

Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054, USA.

The molecular and cellular mechanisms involved in plant resistance to the necrotrophic fungal pathogen Botrytis cinerea and their genetic control are poorly understood. Botrytis causes severe disease in a wide range of plant species, both in the field and in postharvest situations, resulting in significant economic losses. We have isolated the BOS1 (BOTRYTIS-SUSCEPTIBLE1) gene of Arabidopsis based on a T-DNA insertion allele that resulted in increased susceptibility to Botrytis infection. The BOS1 gene is required to restrict the spread of another necrotrophic pathogen, Alternaria brassicicola, suggesting a common host response strategy against these pathogens. In the case of the biotrophic pathogens Pseudomonas syringae pv tomato and the oomycete parasite Peronospora parasitica, bos1 exhibits enhanced disease symptoms, but pathogen growth is similar in bos1 and wild-type plants. Strikingly, bos1 plants have impaired tolerance to water deficit, increased salinity, and oxidative stress. Botrytis infection induces the expression of the BOS1 gene. This increased expression is severely impaired in the coi1 mutant, suggesting an interaction of BOS1 with the jasmonate signaling pathway. BOS1 encodes an R2R3MYB transcription factor protein, and our results suggest that it mediates responses to signals, possibly mediated by reactive oxygen intermediates from both biotic and abiotic stress agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1105/tpc.014167DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC280560PMC
November 2003

Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants.

Plant J 2003 Jan;33(1):87-95

Fachbereich Biologie der Universität, Postfach 3049, 67653 Kaiserslautern, Germany.

Infection of one leaf of cucumber (Cucumis sativa) plants can render other leaves resistant to various pathogens. This so-called systemic acquired resistance (SAR) can be functionally mimicked by certain chemicals. All these treatments enhanced expression of a gene encoding a novel proline-rich protein (PRP1) which has C-terminal repetitive sequences containing an unusually high amount of lysine and arginine residues. Antibodies raised against a synthetic peptide derived from four of the repetitive sequences cross-reacted mainly with a cell wall polypeptide of an apparent MW of 8 kDa. The protein accumulated upon SAR induction, though it does not appear to take part in oxidative protein cross-linking, at least in the hypocotyl tissue. The synthetic peptide derived from the repetitive sequences was able to polymerize orthosilicic acid to insoluble silica, a property not resulting directly from the primary protein sequence, but rather from the high positive charge density. Our results suggest that during induction of SAR, the synthesis of a strongly cationic PRP prepares the cell walls for enhanced silica deposition which is known to participate in cell wall reinforcement, localized at the site of attempted penetration of fungi into epidermal cells. Constitutive accumulation of related PRPs may function in silica deposition during certain developmental stages, a process important for various physiological functions of green plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-313x.2003.01606.xDOI Listing
January 2003

Isolation and characterization of broad-spectrum disease-resistant Arabidopsis mutants.

Genetics 2002 Apr;160(4):1661-71

Syngenta Biotechnology Institute, Research Triangle Park, North Carolina 27709, USA.

To identify Arabidopsis mutants that constitutively express systemic acquired resistance (SAR), we constructed reporter lines expressing the firefly luciferase gene under the control of the SAR-inducible PR-1 promoter (PR-1/luc). After EMS mutagenesis of a well-characterized transgenic line, we screened 250,000 M(2) plants for constitutive expression of the reporter gene in vivo. From a mutant collection containing several hundred putative mutants, we concentrated on 16 mutants lacking spontaneous hypersensitive response (HR) cell death. We mapped 4 of these constitutive immunity (cim) mutants to chromosome arms. Constitutive expression of disease resistance was established by analyzing responses to virulent Peronospora parasitica and Pseudomonas syringae strains, by RNA blot analysis for endogenous marker genes, and by determination of salicylic acid levels in the mutants. The variety of the cim phenotypes allowed us to define distinct steps in both the canonical SAR signaling pathway and a separate pathway for resistance to Erysiphe cichoracearum, active in only a subset of the mutants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462068PMC
April 2002

Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent.

Plant J 2002 Feb;29(3):381-91

Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.

LSD1 was defined as a negative regulator of plant cell death and basal disease resistance based on its null mutant phenotypes. We addressed the relationship between lsd1-mediated runaway cell death and signaling components required for systemic acquired resistance (SAR), namely salicylic acid (SA) accumulation and NIM1/NPR1. We present two important findings. First, SA accumulation and NIM1/NPR1 are required for lsd1-mediated runaway cell death following pathogen infection or application of chemicals that mimic SA action. This implies that lsd1-dependent cell death occurs 'downstream' of the accumulation of SA. As SA application triggers runaway cell death in lsd1 but not wild-type plants, we infer that LSD1 negatively regulates an SA-dependent signal leading to cell death. Thus SA is both a trigger and a required mediator of lsd1 runaway cell death. Second, neither SA accumulation nor NIM1/NPR1 function is required for the basal resistance operating in lsd1. Therefore LSD1 negatively regulates a basal defense pathway that can act upstream or independently of both NIM1/NPR1 function and SA accumulation following avirulent or virulent pathogen challenge. Our data, together with results from other studies, point to the existence of an SA-dependent 'signal potentiation loop' controlling HR. Continued escalation of signaling in the absence of LSD1 leads to runaway cell death. We propose that LSD1 is a key negative regulator of this signal potentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.0960-7412.2001.01225.xDOI Listing
February 2002