Publications by authors named "Riyaz Ahmad Mohamed Ali"

2 Publications

  • Page 1 of 1

Advanced Nanoscale Surface Characterization of CuO Nanoflowers for Significant Enhancement of Catalytic Properties.

Molecules 2021 May 4;26(9). Epub 2021 May 4.

School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bharu 81310, Malaysia.

In this work, advanced nanoscale surface characterization of CuO Nanoflowers synthesized by controlled hydrothermal approach for significant enhancement of catalytic properties has been investigated. The CuO nanoflower samples were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), high-angular annular dark field scanning transmission electron microscopy (HAADF-STEM) with elemental mapping, energy dispersive spectroscopy (STEM-EDS) and UV-Vis spectroscopy techniques. The nanoscale analysis of the surface study of monodispersed individual CuO nanoflower confirmed the fine crystalline shaped morphology composed of ultrathin leaves, monoclinic structure and purified phase. The result of HR-TEM shows that the length of one ultrathin leaf of copper oxide nanoflower is about ~650-700 nm, base is about ~300.77 ± 30 nm and the average thickness of the tip of individual ultrathin leaf of copper oxide nanoflower is about ~10 ± 2 nm. Enhanced absorption of visible light ~850 nm and larger value of band gap energy (1.68 eV) have further supported that the as-grown material (CuO nanoflowers) is an active and well-designed surface morphology at the nanoscale level. Furthermore, significant enhancement of catalytic properties of copper oxide nanoflowers in the presence of H2O2 for the degradation of methylene blue (MB) with efficiency ~96.7% after 170 min was obtained. The results showed that the superb catalytic performance of well-fabricated CuO nanoflowers can open a new way for substantial applications of dye removal from wastewater and environment fields.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules26092700DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124738PMC
May 2021

Single Cell Analysis of Neutrophils NETs by Microscopic LSPR Imaging System.

Micromachines (Basel) 2019 Dec 31;11(1). Epub 2019 Dec 31.

Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan.

A simple microengraving cell monitoring method for neutrophil extracellular traps (NETs) released from single neutrophils has been realized using a polydimethylsiloxane (PDMS) microwell array (MWA) sheet on a plasmon chip platform. An imbalance between NETs formation and the succeeding degradation (NETosis) are considered associated with autoimmune disease and its pathogenesis. Thus, an alternative platform that can conduct monitoring of this activity on single cell level at minimum cost but with great sensitivity is greatly desired. The developed MWA plasmon chips allow single cell isolation of neutrophils from 150 µL suspension (6.0 × 10 cells/mL) with an efficiency of 36.3%; 105 microwells with single cell condition. To demonstrate the utility of the chip, trapped cells were incubated between 2 to 4 h after introducing with 100 nM phorbol 12-myristate 13-acetate (PMA) before measurement. Under observation using a hyperspectral imaging system that allows high-throughput screening, the neutrophils stimulated by PMA solution show a significant release of fibrils and NETs after 4 h, with observed maximum areas between 314-758 µm. An average absorption peak wavelength shows a redshift of Δλ = 1.5 nm as neutrophils release NETs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi11010052DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019790PMC
December 2019
-->