Publications by authors named "Rita Schmutzler"

288 Publications

Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element.

Am J Hum Genet 2021 Jun 16. Epub 2021 Jun 16.

Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.

A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.05.013DOI Listing
June 2021

First international workshop of the ATM and cancer risk group (4-5 December 2019).

Fam Cancer 2021 Jun 14. Epub 2021 Jun 14.

Huntsman Cancer Institute, Salt Lake City, USA.

The first International Workshop of the ATM and Cancer Risk group focusing on the role of Ataxia-Telangiectasia Mutated (ATM) gene in cancer was held on December 4 and 5, 2019 at Institut Curie in Paris, France. It was motivated by the fact that germline ATM pathogenic variants have been found to be associated with different cancer types. However, due to the lack of precise age-, sex-, and site-specific risk estimates, no consensus on management guidelines for variant carriers exists, and the clinical utility of ATM variant testing is uncertain. The meeting brought together epidemiologists, geneticists, biologists and clinicians to review current knowledge and on-going challenges related to ATM and cancer risk. This report summarizes the meeting sessions content that covered the latest results in family-based and population-based studies, the importance of accurate variant classification, the effect of radiation exposures for ATM variant carriers, and the characteristics of ATM-deficient tumors. The report concludes that ATM variant carriers outside of the context of Ataxia-Telangiectasia may benefit from effective cancer risk management and therapeutic strategies and that efforts to set up large-scale studies in the international framework to achieve this goal are necessary.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10689-021-00248-yDOI Listing
June 2021

The predictive ability of the 313 variant-based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant.

Genet Med 2021 Jun 10. Epub 2021 Jun 10.

Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic.

Purpose: To evaluate the association between a previously published 313 variant-based breast cancer (BC) polygenic risk score (PRS) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.

Methods: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402 prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS and CBC risk.

Results: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06-1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS, HR = 1.15, 95% CI (1.07-1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative PRS 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes, respectively.

Conclusion: The PRS can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the PRS needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decision-making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01198-7DOI Listing
June 2021

Development of decision aids for female BRCA1 and BRCA2 mutation carriers in Germany to support preference-sensitive decision-making.

BMC Med Inform Decis Mak 2021 06 5;21(1):180. Epub 2021 Jun 5.

Institute for Health Economics and Clinical Epidemiology, The University Hospital of Cologne, Gleueler Straße 176-178, 50935, Cologne, Germany.

Background: Women with pathogenic BRCA1 and BRCA2 mutations possess a high risk of developing breast and ovarian cancer. They face difficult choices when considering preventive options. This study presents the development process of the first decision aids to support this complex decision-making process in the German healthcare system.

Methods: A six-step development process based on the International Patient Decision Aid Standards was used, including a systematic literature review of existing decision aids, a topical medical literature review, preparation of the decision aids, focus group discussions with women with BRCA1/2 mutations, internal and external reviews by clinical and self-help experts, and user tests. All reviews were followed by iterative revisions.

Results: No existing decision aids were transferable to the German setting. The medical research revealed a need to develop separate decision aids for women with BRCA1/2 mutations (A) without a history of cancer (previvors) and (B) with a history of unilateral breast cancer (survivors). The focus group discussions confirmed a high level of approval for the decision aids from both target groups. Additionally, previvors requested more information on risk-reducing breast surgery, risk-reducing removal of both ovaries and Fallopian tubes, and psychological aspects; survivors especially wanted more information on breast cancer on the affected side (e.g. biological parameters, treatment, and risk of recurrence).

Conclusions: In a structured process, two target-group-specific DAs for previvors/survivors with BRCA1/2 mutations were developed to support decision-making on risk-adapted preventive options. These patient-oriented tools offer an important addition to existing specialist medical care in Germany.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12911-021-01528-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8180100PMC
June 2021

Adjuvant Olaparib for Patients with - or -Mutated Breast Cancer.

N Engl J Med 2021 Jun 3. Epub 2021 Jun 3.

From the Breast Cancer Now Toby Robins Research Centre, the Institute of Cancer Research (A.N.J.T.), and the Breast Cancer Now Unit, Guy's Hospital Cancer Centre, King's College London (A.N.J.T.), London, AstraZeneca, Cambridge (S.J.H., N.B.), and Frontier Science (Scotland), Kincraig (R.M.C., E.M.F., C.C.) - all in the United Kingdom; Dana-Farber Cancer Institute, Harvard Medical School (J.E.G., R.D.G.), Frontier Science Foundation (R.D.G.), and Harvard T.H. Chan School of Public Health (R.D.G.) - all in Boston; the Breast Oncology Institute, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (B.K.); the University of Milan, European Institute of Oncology IRCCS, Milan (G.V.); Breast International Group (D.F., A.A.) and Institut Jules Bordet, l'Université Libre de Bruxelles (E.A., M.P.), Brussels; NRG Oncology (P.R., H.B., P.C.L., N.W., G.Y., C.E.G.) and the Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania (S.M.D.), Philadelphia, and the UPMC Hillman Cancer Center (P.R., P.C.L., N.W.) and the Department of Biostatistics (H.B., J.P.C., G.Y.), University of Pittsburgh, and the NSABP Foundation (N.W.), Pittsburgh - all in Pennsylvania; AstraZeneca, Gaithersburg (A.F.), and the National Cancer Institute, Rockville (L.A.K.) - both in Maryland; Vall d'Hebron Institute of Oncology and Vall d'Hebron University Hospital (J.B.) - both in Barcelona; BC Cancer, Vancouver, BC, Canada (K.A.G.); Sahlgrenska University Hospital (B.L.) and the Institute of Clinical Sciences, Department of Oncology, Sahlgrenska Academy, Gothenburg University (B.L.) - both in Gothenburg, Sweden; the Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk (E.S.), the Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw (Z.N.), the International Hereditary Cancer Center, Pomeranian Medical University, Szczecin (T.H.), and Read-Gene, Grzepnica (T.H.) - all in Poland; Kaiser Permanente Vallejo Medical Center, Vallejo (J.M.S.), and the UCLA Fielding School of Public Health, David Geffen School of Medicine at UCLA (P.A.G.), and the UCLA Jonsson Comprehensive Cancer Center (P.A.G.), Los Angeles - all in California; Fudan University Shanghai Cancer Center, Shanghai, China, (Z.S.); Georgia NCORP, Northside Hospital Cancer Institute (A.W.P.), and Piedmont Healthcare (A.W.P.) - both in Atlanta; German Breast Group, Neu-Isenburg (S.L.), the Center for Hematology and Oncology Bethanien and Goethe University, Frankfurt (S.L.), and the Center for Familial Breast and Ovarian Cancer and the Center for Integrated Oncology, Faculty of Medicine, University Hospital Cologne, Cologne (R.S.) - all in Germany; the Department of Internal Medicine I and Gaston H. Glock Research Center, Medical University of Vienna, Vienna (G.G.S.); Merck, Kenilworth, NJ (V.K.); the University of Queensland Centre for Clinical Research and Pathology Queensland (S.R.L.) - both in Brisbane, QLD, Australia; and Houston Methodist Cancer Center (C.E.G.) and Weill Cornell Medical College (C.E.G.) - both in Houston.

Background: Poly(adenosine diphosphate-ribose) polymerase inhibitors target cancers with defects in homologous recombination repair by synthetic lethality. New therapies are needed to reduce recurrence in patients with or germline mutation-associated early breast cancer.

Methods: We conducted a phase 3, double-blind, randomized trial involving patients with human epidermal growth factor receptor 2 (HER2)-negative early breast cancer with or germline pathogenic or likely pathogenic variants and high-risk clinicopathological factors who had received local treatment and neoadjuvant or adjuvant chemotherapy. Patients were randomly assigned (in a 1:1 ratio) to 1 year of oral olaparib or placebo. The primary end point was invasive disease-free survival.

Results: A total of 1836 patients underwent randomization. At a prespecified event-driven interim analysis with a median follow-up of 2.5 years, the 3-year invasive disease-free survival was 85.9% in the olaparib group and 77.1% in the placebo group (difference, 8.8 percentage points; 95% confidence interval [CI], 4.5 to 13.0; hazard ratio for invasive disease or death, 0.58; 99.5% CI, 0.41 to 0.82; P<0.001). The 3-year distant disease-free survival was 87.5% in the olaparib group and 80.4% in the placebo group (difference, 7.1 percentage points; 95% CI, 3.0 to 11.1; hazard ratio for distant disease or death, 0.57; 99.5% CI, 0.39 to 0.83; P<0.001). Olaparib was associated with fewer deaths than placebo (59 and 86, respectively) (hazard ratio, 0.68; 99% CI, 0.44 to 1.05; P = 0.02); however, the between-group difference was not significant at an interim-analysis boundary of a P value of less than 0.01. Safety data were consistent with known side effects of olaparib, with no excess serious adverse events or adverse events of special interest.

Conclusions: Among patients with high-risk, HER2-negative early breast cancer and germline or pathogenic or likely pathogenic variants, adjuvant olaparib after completion of local treatment and neoadjuvant or adjuvant chemotherapy was associated with significantly longer survival free of invasive or distant disease than was placebo. Olaparib had limited effects on global patient-reported quality of life. (Funded by the National Cancer Institute and AstraZeneca; OlympiA ClinicalTrials.gov number, NCT02032823.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa2105215DOI Listing
June 2021

Risk-Adjusted Prevention. Perspectives on the Governance of Entitlements to Benefits in the Case of Genetic (Breast Cancer) Risks.

Recent Results Cancer Res 2021 ;218:47-66

Center for Hereditary Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), University Hospital Cologne, Cologne, Germany.

This article is a revised version of our proposal for the establishment of the legal concept of risk-adjusted prevention in the German healthcare system to regulate access to risk-reduction measures for persons at high and moderate genetic cancer risk (Meier et al. Risikoadaptierte Prävention'. Governance Perspective für Leistungsansprüche bei genetischen (Brustkrebs-)Risiken, Springer, Wiesbaden, 2018). The German context specifics are summarized to enable the source text to be used for other country-specific healthcare systems. Establishing such a legal concept is relevant to all universal and free healthcare systems similar to Germany's. Disease risks can be determined with increasing precision using bioinformatics and biostatistical innovations ('big data'), due to the identification of pathogenic germ line mutations in cancer risk genes as well as non-genetic factors and their interactions. These new technologies open up opportunities to adapt therapeutic and preventive measures to the individual risk profile of complex diseases in a way that was previously unknown, enabling not only adequate treatment but in the best case, prevention. Access to risk-reduction measures for carriers of genetic risks is generally not regulated in healthcare systems that guarantee universal and equal access to healthcare benefits. In many countries, including Austria, Denmark, the UK and the US, entitlement to benefits is essentially linked to the treatment of already manifest disease. Issues around claiming benefits for prophylactic measures involve not only evaluation of clinical options (genetic diagnostics, chemoprevention, risk-reduction surgery), but the financial cost and-from a social ethics perspective-the relationship between them. Section 1 of this chapter uses the specific example of hereditary breast cancer to show why from a medical, social-legal, health-economic and socio-ethical perspective, regulated entitlement to benefits is necessary for persons at high and moderate risk of cancer. Section 2 discusses the medical needs of persons with genetic cancer risks and goes on to develop the healthy sick model which is able to integrate the problems of the different disciplines into one scheme and to establish criteria for the legal acknowledgement of persons at high and moderate (breast cancer) risks. In the German context, the social-legal categories of classical therapeutic medicine do not adequately represent preventive measures as a regular service within the healthcare system. We propose risk-adjusted prevention as a new legal concept based on the heuristic healthy sick model. This category can serve as a legal framework for social law regulation in the case of persons with genetic cancer risks. Risk-adjusted prevention can be established in principle in any healthcare system. Criteria are also developed in relation to risk collectives and allocation (Sects. 3, 4, 5).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-63749-1_5DOI Listing
May 2021

Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects.

NPJ Breast Cancer 2021 May 12;7(1):52. Epub 2021 May 12.

School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.

Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-021-00255-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115524PMC
May 2021

Management of individuals with germline variants in PALB2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG).

Genet Med 2021 May 11. Epub 2021 May 11.

Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.

Purpose: PALB2 germline pathogenic variants are associated with increased breast cancer risk and smaller increased risk of pancreatic and likely ovarian cancer. Resources for health-care professionals managing PALB2 heterozygotes are currently limited.

Methods: A workgroup of experts sought to outline management of PALB2 heterozygotes based on current evidence. Peer-reviewed publications from PubMed were identified to guide recommendations, which arose by consensus and the collective expertise of the authors.

Results: PALB2 heterozygotes should be offered BRCA1/2-equivalent breast surveillance. Risk-reducing mastectomy can be considered guided by personalized risk estimates. Pancreatic cancer surveillance should be considered, but ideally as part of a clinical trial. Typically, ovarian cancer surveillance is not recommended, and risk-reducing salpingo-oophorectomy should only rarely be considered before the age of 50. Given the mechanistic similarities, PALB2 heterozygotes should be considered for therapeutic regimens and trials as those for BRCA1/2.

Conclusion: This guidance is similar to those for BRCA1/2. While the range of the cancer risk estimates overlap with BRCA1/2, point estimates are lower in PALB2 so individualized estimates are important for management decisions. Systematic prospective data collection is needed to determine as yet unanswered questions such as the risk of contralateral breast cancer and survival after cancer diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01151-8DOI Listing
May 2021

Modern day screening for Lynch syndrome in endometrial cancer: the KEM experience.

Arch Gynecol Obstet 2021 Mar 12. Epub 2021 Mar 12.

Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte (KEM), Henricistrasse 92, 45136, Essen, Germany.

Purpose: Current guidelines for Lynch syndrome detection in endometrial cancer (EC) patients rely either on risk evaluation, based on personal/family history, or detection of mismatch repair (MMR) deficiency on tumor tissue. We present a combined screening algorithm for Lynch syndrome.

Methods: In this study, 213 consecutive patients treated for EC at Kliniken Essen-Mitte between 2014 and 2018 were included. Personal/family history was evaluated by the Amsterdam II, revised Bethesda/German-DKG criteria and prediction model PREMM. MMR testing was performed by immunohistochemistry (IHC) and/or polymerase chain reaction (PCR) based microsatellite analysis on tumor tissue. MLH1 promoter methylation analysis was performed in case of MLH1 loss or microsatellite instability.

Results: Based on personal/family history 2/213 (Amsterdam II), 31/213 (revised Bethesda/German-DKG) and 149/213 (PREMM) patients were identified as at risk for Lynch syndrome. MMR analysis was performed by IHC in 51.2%, by PCR in 32.4%, and in 16.4% of patients both methods were used. MMR deficiency was detected in 20.6% (44/213). Methylation analysis was performed in 27 patients of whom, 22 (81.4%) showed MLH1 promoter hypermethylation. Only 9% of MMR deficient patients were identified as at risk for Lynch syndrome by the revised Bethesda/German-DKG criteria. A pathogenic germline mutation was discovered in 3 out of 20 patients that underwent genetic testing. None of these patients were younger than 50 years or had a family history of Lynch syndrome-associated malignancies.

Conclusion: General MMR assessment is a feasible strategy to improve the detection of Lynch Syndrome in patients with EC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00404-021-06006-wDOI Listing
March 2021

A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers.

Nat Commun 2021 02 17;12(1):1078. Epub 2021 Feb 17.

Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark.

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20496-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890067PMC
February 2021

Precursor fractions of neurotensin and enkephalin might point to molecular mechanisms of cancer risk modulation during a lifestyle-intervention in germline BRCA1/2 gene mutation carriers.

Breast Cancer Res Treat 2021 Apr 4;186(3):741-752. Epub 2021 Feb 4.

Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts Der Isar, Technical University Munich (TUM), Munich, Germany.

Background: Germline BRCA1/2 mutation carriers (gBMC) face increased cancer risks that are modulated via non-genetic lifestyle factors whose underlying molecular mechanisms are unknown. The peptides Neurotensin (NT) and Enkephalin (ENK)-involved in tumorigenesis and obesity-related diseases-are of interest. We wanted to know whether these biomarkers differ between gBMC and women from the general population and what effect a 1-year lifestyle-intervention has in gBMC.

Methods: The stable precursor fragments pro-NT and pro-ENK were measured at study entry (SE), after 3 and 12 months for 68 women from LIBRE-1 (a controlled lifestyle-intervention feasibility trial for gBMC involving structured endurance training and the Mediterranean Diet). The SE values were compared with a cohort of the general population including female subjects with and without previous cancer disease, non-suggestive for hereditary breast and ovarian cancer (OMA-reference). For LIBRE-1, we analysed the association between the intervention-related change in the two biomarkers and certain lifestyle factors.

Results: At SE, gBMC had a higher median pro-NT than OMA-reference (in the subgroups with previous cancer 117 vs. 91 pmol/L, p = 0.002). Non-diseased gBMC had lower median pro-ENK levels when compared to the non-diseased reference group. VO2peak and pro-NT 1-year change in LIBRE-1 were inversely correlated (r = - 0.435; CI - 0.653 to - 0.151; p = 0.004). Pro-ENK correlated positively with VO2peak at SE (r = 0.323; CI 0.061-0.544; p = 0.017). Regression analyses showed an inverse association of 1-year changes for pro-NT and Omega-6/Omega-3 (Estimate: - 37.9, p = 0.097/0.080) in multivariate analysis.

Conclusion: Our results give first indications for lifestyle-related modification particularly of pro-NT in gBMC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-020-06070-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019429PMC
April 2021

CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers.

Br J Cancer 2021 02 26;124(4):842-854. Epub 2021 Jan 26.

Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Background: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk.

Methods: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry.

Results: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10).

Conclusions: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-020-01185-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884683PMC
February 2021

Oral contraceptive use and ovarian cancer risk for BRCA1/2 mutation carriers: an international cohort study.

Am J Obstet Gynecol 2021 Jan 22. Epub 2021 Jan 22.

Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic.

Background: Ovarian cancer risk in BRCA1 and BRCA2 mutation carriers has been shown to decrease with longer duration of oral contraceptive use. Although the effects of using oral contraceptives in the general population are well established (approximately 50% risk reduction in ovarian cancer), the estimated risk reduction in mutation carriers is much less precise because of potential bias and small sample sizes. In addition, only a few studies on oral contraceptive use have examined the associations of duration of use, time since last use, starting age, and calendar year of start with risk of ovarian cancer.

Objective: This study aimed to investigate in more detail the associations of various characteristics of oral contraceptive use and risk of ovarian cancer, to provide healthcare providers and carriers with better risk estimates.

Study Design: In this international retrospective study, ovarian cancer risk associations were assessed using oral contraceptives data on 3989 BRCA1 and 2445 BRCA2 mutation carriers. Age-dependent-weighted Cox regression analyses were stratified by study and birth cohort and included breast cancer diagnosis as a covariate. To minimize survival bias, analyses were left truncated at 5 years before baseline questionnaire. Separate analyses were conducted for each aspect of oral contraceptive use and in a multivariate analysis, including all these aspects. In addition, the analysis of duration of oral contraceptive use was stratified by recency of use.

Results: Oral contraceptives were less often used by mutation carriers who were diagnosed with ovarian cancer (ever use: 58.6% for BRCA1 and 53.5% BRCA2) than by unaffected carriers (ever use: 88.9% for BRCA1 and 80.7% for BRCA2). The median duration of use was 7 years for both BRCA1 and BRCA2 carriers who developed ovarian cancer and 9 and 8 years for unaffected BRCA1 and BRCA2 carriers with ovarian cancer, respectively. For BRCA1 mutation carriers, univariate analyses have shown that both a longer duration of oral contraceptive use and more recent oral contraceptive use were associated with a reduction in the risk of ovarian cancer. However, in multivariate analyses, including duration of use, age at first use, and time since last use, duration of oral contraceptive use proved to be the prominent protective factor (compared with <5 years: 5-9 years [hazard ratio, 0.67; 95% confidence interval, 0.40-1.12]; >10 years [hazard ratio, 0.37; 95% confidence interval, 0.19-0.73]; P=.008). The inverse association between duration of use and ovarian cancer risk persisted for more than 15 years (duration of ≥10 years; BRCA1 <15 years since last use [hazard ratio, 0.24; 95% confidence interval, 0.14-0.43]; BRCA1 >15 years since last use [hazard ratio, 0.56; 95% confidence interval, 0.18-0.59]). Univariate results for BRCA2 mutation carriers were similar but were inconclusive because of limited sample size.

Conclusion: For BRCA1 mutation carriers, longer duration of oral contraceptive use is associated with a greater reduction in ovarian cancer risk, and the protection is long term.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajog.2021.01.014DOI Listing
January 2021

Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women.

N Engl J Med 2021 02 20;384(5):428-439. Epub 2021 Jan 20.

The authors' affiliations are as follows: the Centre for Cancer Genetic Epidemiology, Departments of Public Health and Primary Care (L.D., S. Carvalho, J.A., K.A.P., Q.W., M.K.B., J.D., B.D., N. Mavaddat, K. Michailidou, A.C.A., P.D.P.P., D.F.E.) and Oncology (C.L., P.A.H., C. Baynes, D.M.C., L.F., V.R., M. Shah, P.D.P.P., A.M.D., D.F.E.), University of Cambridge, Cambridge, the Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine (A. Campbell, D.J.P.), and the Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology (D.J.P.), University of Edinburgh, the Cancer Research UK Edinburgh Centre (D.A.C., J.F.), and the Usher Institute of Population Health Sciences and Informatics, University of Edinburgh Medical School (A. Campbell, J.F.), Edinburgh, the Divisions of Informatics, Imaging, and Data Sciences (E.F.H.), Cancer Sciences (A. Howell), Population Health, Health Services Research, and Primary Care (A. Lophatananon, K. Muir), and Evolution and Genomic Sciences, School of Biological Sciences (W.G.N., E.M.V., D.G.E.), University of Manchester, the NIHR Manchester Biomedical Research Unit (E.F.H.) and the Nightingale Breast Screening Centre, Wythenshawe Hospital (E.F.H., H.I.), Academic Health Science Centre and North West Genomics Laboratory Hub, and the Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust (W.G.N., E.M.V., D.G.E.), Manchester, the School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London (E.J.S.), the Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham (I.T.), and the Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford (I.T.) - all in the United Kingdom; the Human Genotyping-CEGEN Unit, Human Cancer Genetic Program (A.G.-N., M.R.A., N.Á., B.H., R.N.-T.), and the Human Genetics Group (V.F., A.O., J.B.), Spanish National Cancer Research Center, Centro de Investigación en Red de Enfermedades Raras (A.O., J.B.), Servicio de Oncología Médica, Hospital Universitario La Paz (M.P.Z.), and Molecular Oncology Laboratory, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (M. de la Hoya), Madrid, the Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago (A. Carracedo, M.G.-D.), and Centro de Investigación en Red de Enfermedades Raras y Centro Nacional de Genotipado, Universidad de Santiago de Compostela (A. Carracedo), Santiago de Compostela, the Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galeo de Saúde, Vigo (J.E.C.), and Servicio de Cirugía General y Especialidades, Hospital Monte Naranco, Oviedo (J.I.A.P.) - all in Spain; the Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund (C. Wahlström, J.V., M.L., T. Törngren, Å.B., A.K.), the Department of Oncology, Örebro University Hospital, Örebro (C. Blomqvist), and the Departments of Medical Epidemiology and Biostatistics (K.C., M.E., M.G., P. Hall, W.H., K.H.), Oncology, Södersjukhuset (P. Hall, S. Margolin), Molecular Medicine and Surgery (A. Lindblom), and Clinical Science and Education, Södersjukhuset (S. Margolin, C. Wendt), Karolinska Institutet, and the Department of Clinical Genetics, Karolinska University Hospital (A. Lindblom), Stockholm - all in Sweden; the Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD (M.T.P., C.F., G.C.-T., A.B.S.), the Cancer Epidemiology Division, Cancer Council Victoria (G.G.G., R.J.M., R.L.M.), the Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health (G.G.G., R.J.M., R.L.M.), and the Department of Clinical Pathology (M.C.S.), University of Melbourne, Anatomical Pathology, Alfred Hospital (C.M.), and the Cancer Epidemiology Division, Cancer Council Victoria (M.C.S.), Melbourne, VIC, and Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC (G.G.G., M.C.S., R.L.M.) - all in Australia; the Division of Molecular Pathology (R.K., S. Cornelissen, M.K.S.), Family Cancer Clinic (F.B.L.H., L.E.K.), Department of Epidemiology (M.A.R.), and Division of Psychosocial Research and Epidemiology (M.K.S.), the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center, Utrecht (M.G.E.M.A.), the Department of Clinical Genetics, Erasmus University Medical Center (J.M.C., A.M.W.O.), and the Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute (B.A.M.H.-G., A. Hollestelle, M.J.H.), Rotterdam, the Department of Clinical Genetics, Maastricht University Medical Center, Maastricht (E.B.G.G.), the Departments of Human Genetics (I.M.M.L., M.P.G.V., P.D.), Clinical Genetics (C.J.A.), and Pathology (P.D.), Leiden University Medical Center, Leiden, the Department of Human Genetics, Radboud University Medical Center, Nijmegen (A.R.M.), and the Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen (J.C.O.) - all in the Netherlands; the Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute (B.D.), and the Division of Cancer Epidemiology and Genetics, National Cancer Institute (T.A., S.J.C., X.R.Y., M.G.-C.), National Institutes of Health, Bethesda, MD; the Department of Pathology, Brigham and Women's Hospital, Harvard Medical School (B.D.), and the Department of Nutrition, Harvard T.H. Chan School of Public Health (R.M.V.D.), Boston; the Departments of Clinical Genetics (K.A.), Oncology (C. Blomqvist), and Obstetrics and Gynecology (H.N., M. Suvanto), Helsinki University Hospital, University of Helsinki, Helsinki, and the Unit of Clinical Oncology, Kuopio University Hospital (P. Auvinen), the Institute of Clinical Medicine, Oncology (P. Auvinen), the Translational Cancer Research Area (J.M.H., V.-M.K., A. Mannermaa), and the Institute of Clinical Medicine, Pathology, and Forensic Medicine (J.M.H., V.-M.K., A. Mannermaa), University of Eastern Finland, and the Biobank of Eastern Finland, Kuopio University Hospital (V.-M.K., A. Mannermaa), Kuopio - both in Finland; the N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus (N.N.A., N.V.B.); the Department of Gynecology and Obstetrics and Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel (N.A.), the Institute of Medical Biometry and Epidemiology (H. Becher) and Cancer Epidemiology Group (T.M., J.C.-C.), University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, the Department of Gynecology and Obstetrics (M.W.B., P.A.F., L.H.) and Institute of Human Genetics (A.B.E.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, the Division of Cancer Epidemiology (S.B., A. Jung, P.M.K., J.C.-C.), Molecular Epidemiology Group, C080 (B. Burwinkel, H.S.), Division of Pediatric Neurooncology (A.F.), and Molecular Genetics of Breast Cancer (U.H., M.M., M.U.R., D.T.), German Cancer Research Center, Molecular Biology of Breast Cancer, University Women's Clinic Heidelberg, University of Heidelberg (B. Burwinkel, A.S., H.S.), Hopp Children's Cancer Center (A.F.), Faculty of Medicine, University of Heidelberg (P.M.K.), and National Center for Tumor Diseases, University Hospital and German Cancer Research Center (A.S., C.S.), Heidelberg, the Department of Radiation Oncology (N.V.B., M. Bremer, H.C.) and the Gynecology Research Unit (N.V.B., T.D., P. Hillemanns, T.-W.P.-S., P.S.), Hannover Medical School, Hannover, the Institute of Human Genetics, University of Münster, Münster (N.B.-M.), Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart (H. Brauch, W.-Y.L.), iFIT-Cluster of Excellence, University of Tübingen, and the German Cancer Consortium, German Cancer Research Center, Partner Site Tübingen (H. Brauch), and the University of Tübingen (W.-Y.L.), Tübingen, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum (T.B.), Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig (C.E.), Center for Hereditary Breast and Ovarian Cancer (E.H., R.K.S.) and Center for Integrated Oncology (E.H., R.K.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, the Department of Internal Medicine, Evangelische Kliniken Bonn, Johanniter Krankenhaus, Bonn (Y.-D.K.), the Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich (A. Meindl), and the Institute of Pathology, Städtisches Klinikum Karlsruhe, Karlsruhe (T.R.) - all in Germany; the Gynecological Cancer Registry, Centre Georges-François Leclerc, Dijon (P. Arveux), and the Center for Research in Epidemiology and Population Health, Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif (E.C.-D., P.G., T. Truong) - both in France; the Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences (M. Bermisheva, E.K.), the Department of Genetics and Fundamental Medicine, Bashkir State University (E.K., D.P., Y.V.), and the Ufa Research Institute of Occupational Health and Human Ecology (Y.V.), Ufa, Russia; the Department of Genetics and Pathology (K.B., A. Jakubowska, J. Lubiński, K.P.) and the Independent Laboratory of Molecular Biology and Genetic Diagnostics (A. Jakubowska), Pomeranian Medical University, Szczecin, Poland; the Copenhagen General Population Study, the Department of Clinical Biochemistry (S.E.B., B.G.N.), and the Department of Breast Surgery (H.F.), Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, and the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (S.E.B., B.G.N.) - both in Denmark; the Division of Cancer Prevention and Genetics, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) (B. Bonanni), the Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano (S. Manoukian), the Genome Diagnostics Program, FIRC Institute of Molecular Oncology (P.P.), and the Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (P.R.), Milan; the Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet (A.-L.B.-D., G.I.G.A., V.N.K.), and the Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (A.-L.B.-D., V.N.K.), Oslo; Medical Faculty, Universidad de La Sabana (I.B.), and the Clinical Epidemiology and Biostatistics Department (F.G.) and Institute of Human Genetics (D.T.), Pontificia Universidad Javeriana, Bogota, Colombia; the Department of Internal Medicine and Huntsman Cancer Institute, University of Utah (N.J.C., M.J.M., J.A.W.), and the Intermountain Healthcare Biorepository and Department of Pathology, Intermountain Healthcare (M.H.C.), Salt Lake City; the David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California, Los Angeles (P.A.F.), and Moores Cancer Center (M.G.-D., M.E.M.) and the Department of Family Medicine and Public Health (M.E.M.), University of California San Diego, La Jolla; the Departments of Medical Oncology (V.G., D.M.) and Pathology (M.T.), University Hospital of Heraklion, Heraklion, and the Department of Oncology, University Hospital of Larissa, Larissa (E.S.) - both in Greece; the Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital (G.G., I.L.A.), the Departments of Laboratory Medicine and Pathobiology (A.M.M.) and Molecular Genetics (I.L.A.), University of Toronto, and the Laboratory Medicine Program, University Health Network (A.M.M.), Toronto, and the Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, QC (J.S.) - both in Canada; the Department of Electron Microscopy and Molecular Pathology (A. Hadjisavvas, K.K., M.A.L.), the Cyprus School of Molecular Medicine (A. Hadjisavvas, K.K., M.A.L., K. Michailidou), and the Biostatistics Unit (K. Michailidou), Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; the Saw Swee Hock School of Public Health (M. Hartman, R.M.V.D.) and the Department of Medicine, Yong Loo Lin School of Medicine (R.M.V.D.), National University of Singapore, the Department of Surgery, National University Health System (M. Hartman, J. Li), and the Human Genetics Division, Genome Institute of Singapore (J. Li), Singapore; the Department of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia (W.K.H.), and the Breast Cancer Research Programme, Cancer Research Malaysia (W.K.H., P.S.N., S.-Y.Y., S.H.T.), Selangor, and the Breast Cancer Research Unit, Cancer Research Institute (N.A.M.T.), and the Department of Surgery, Faculty of Medicine (N.A.M.T., P.S.N., S.H.T.), University Malaya, Kuala Lumpur - both in Malaysia; Surgery, School of Medicine, National University of Ireland, Galway (M.J.K., N. Miller); the Department of Surgery, Daerim Saint Mary's Hospital (S.-W.K.), the Department of Surgery, Ulsan University College of Medicine and Asan Medical Center (J.W.L.), the Department of Surgery, Soonchunhyang University College of Medicine and Soonchunhyang University Hospital (M.H.L.), Integrated Major in Innovative Medical Science, Seoul National University College of Medicine (S.K.P.), and the Cancer Research Institute, Seoul National University (S.K.P.), Seoul, South Korea; the Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan (M.U.R.); and the National Cancer Institute, Ministry of Public Health, Nonthaburi, Thailand (S.T.).

Background: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.

Methods: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.

Results: Protein-truncating variants in 5 genes (, , , , and ) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (, , , and ) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in and , odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in , , , , , and , odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in , , and were associated with a risk of breast cancer overall with a P value of less than 0.001. For , , and , missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.

Conclusions: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1913948DOI Listing
February 2021

Germline BRCA1/2 mutations and severe haematological toxicities in patients with breast cancer treated with neoadjuvant chemotherapy.

Eur J Cancer 2021 Mar 7;145:44-52. Epub 2021 Jan 7.

Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.

Background: BRCA1 and BRCA2 play a central role in DNA repair. Therefore, patients harbouring germline (g) BRCA1/2 mutations (m) treated with chemotherapy might be at higher risk of haematological toxicities.

Methods: Patients from German Breast Group (GBG) and Arbeitsgemeinschaft Gynäkologische Onkologie-breast group studies with early triple-negative breast cancer (TNBC) and known gBRCA1/2m status treated with anthracycline-taxane-based neoadjuvant chemotherapy were analysed. Primary objective was the rate of neutropenia grade (G)III-IV in cycle 1 (C1). Secondary objectives included effects on overall and other haematological toxicities GIII-IV in C1, cumulative haematological toxicity across all cycles, relative total dose intensity, and granulocyte-colony stimulating factor prophylaxis. Haematological toxicities under taxanes, carboplatin, and cyclophosphamide were explored.

Results: Two hundred nine of 1171 (17.8%) evaluated patients had gBRCA1/2m. In C1, 37.4% gBRCA1/2m versus 35.7% wild-type patients had neutropenia GIII-IV (P = 0.683). For C1, gBRCA1/2m predicted neither for neutropenia GIII-IV (odds ratio [OR]: 1.26, 95% confidence intervals [CI]: 0.87-1.82, P = 0.226) nor for other haematological toxicities GIII-IV (OR: 0.91, 95% CI: 0.64-1.31, P = 0.625) in multivariable regression models. Analyses of cumulative toxicities across all cycles yielded similar results except thrombocytopaenia GIII-IV, which was increased in gBRCA1m patients. In patients treated with taxanes, the rate of haematological toxicities GIII-IV was higher in gBRCA1/2m compared with wild-type (59.5% versus 43.1%; p < 0.001). No difference was seen under cyclophosphamide or platinum-containing chemotherapies.

Conclusions: gBRCA1/2m was not associated with higher risk of overall severe haematological toxicities in the first cycle or cumulatively across all cycles under standard chemotherapy for TNBC. Under taxane, patients with gBRCA1/2m might have a higher risk of haematological toxicities GIII-IV, requiring further research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2020.12.007DOI Listing
March 2021

Performance of In Silico Prediction Tools for the Detection of Germline Copy Number Variations in Cancer Predisposition Genes in 4208 Female Index Patients with Familial Breast and Ovarian Cancer.

Cancers (Basel) 2021 Jan 1;13(1). Epub 2021 Jan 1.

Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, 50931 Cologne, Germany.

The identification of germline copy number variants (CNVs) by targeted next-generation sequencing (NGS) frequently relies on in silico CNV prediction tools with unknown sensitivities. We investigated the performances of four in silico CNV prediction tools, including one commercial (Sophia Genetics DDM) and three non-commercial tools (ExomeDepth, GATK gCNV, panelcn.MOPS) in 17 cancer predisposition genes in 4208 female index patients with familial breast and/or ovarian cancer (BC/OC). CNV predictions were verified via multiplex ligation-dependent probe amplification. We identified 77 CNVs in 76 out of 4208 patients (1.81%); 33 CNVs were identified in genes other than , mostly in , , and and less frequently in , , , , , , and . The Sophia Genetics DDM software showed the highest sensitivity; six CNVs were missed by at least one of the non-commercial tools. The positive predictive values ranged from 5.9% (74/1249) for panelcn.MOPS to 79.1% (72/91) for ExomeDepth. Verification of in silico predicted CNVs is required due to high frequencies of false positive predictions, particularly affecting target regions at the extremes of the GC content or target length distributions. CNV detection should not be restricted to due to the relevant proportion of CNVs in further BC/OC predisposition genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13010118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794674PMC
January 2021

Performance of breast cancer polygenic risk scores in 760 female CHEK2 germline mutation carriers.

J Natl Cancer Inst 2020 Dec 29. Epub 2020 Dec 29.

Division of Psychiatry, University College London, Maple House, London, UK.

Background: Genome-wide association studies (GWAS) suggest that the combined effects of breast cancer (BC)-associated single nucleotide polymorphisms (SNPs) can improve BC risk stratification using polygenic risk scores (PRSs). The performance of PRSs in GWAS-independent clinical cohorts is poorly studied in individuals carrying mutations in moderately penetrant BC predisposition genes such as CHEK2.

Methods: 760 female CHEK2 mutation carriers were included; 561 women were affected with BC, of whom 74 developed metachronous contralateral BC (mCBC). For PRS calculations, two SNP sets covering 77 (SNP set 1, developed for BC risk stratification in women unselected for their BRCA1/2 germline mutation status) and 88 (SNP set 2, developed for BC risk stratification in female BRCA1/2 mutation carriers) BC-associated SNPs were used. All statistical tests were two-sided.

Results: Both SNP sets provided concordant PRS results at the individual level (r = 0.91, p < 2.20 × 10-16). Weighted cohort Cox regression analyses revealed statistically significant associations of PRSs with the risk for first BC. For SNP set 1, a hazard ratio (HR) of 1.71 per standard deviation of the PRS was observed (95% confidence interval [CI] = 1.36 to 2.15, p = 3.87x10-6). PRSs identify a subgroup of CHEK2 mutation carriers with a predicted lifetime risk for first BC that exceeds the surveillance thresholds defined by international guidelines. Association of PRS with mCBC was examined via Cox regression analysis (SNP set 1 HR =: 1.23, 95%CI = 0.86 to 1.78, p = .26).

Conclusion: PRSs may be used to personalize risk-adapted preventive measures for women with CHEK2 mutations. Larger studies are required to assess the role of PRSs in mCBC predisposition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa203DOI Listing
December 2020

Sensitivity and specificity of loss of heterozygosity analysis for the classification of rare germline variants in : results of the observational AGO-TR1 study (NCT02222883).

J Med Genet 2020 Dec 3. Epub 2020 Dec 3.

Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany

Variant-specific loss of heterozygosity (LOH) analyses may be useful to classify germline variants of unknown significance (VUS). The sensitivity and specificity of this approach, however, remains unknown. We performed comparative next-generation sequencing analyses of the genes using blood-derived and tumour-derived DNA of 488 patients with ovarian cancer enrolled in the observational AGO-TR1 trial (NCT02222883). Overall, 94 pathogenic, 90 benign and 24 VUS were identified in the germline. A significantly increased variant fraction (VF) of a germline variant in the tumour indicates loss of the wild-type allele; a decreased VF indicates loss of the variant allele. We demonstrate that significantly increased VFs predict pathogenicity with high sensitivity (0.84, 95% CI 0.77 to 0.91), poor specificity (0.63, 95% CI 0.53 to 0.73) and poor positive predictive value (PPV; 0.71, 95% CI 0.62 to 0.79). Significantly decreased VFs predict benignity with low sensitivity (0.26, 95% CI 0.17 to 0.35), high specificity (1.0, 95% CI 0.96 to 1.00) and PPV (1.0, 95% CI 0.85 to 1.00). Variant classification based on significantly increased VFs results in an unacceptable proportion of false-positive results. A significantly decreased VF in the tumour may be exploited as a reliable predictor for benignity, with no false-negative result observed. When applying the latter approach, VUS identified in four patients can now be considered benign. NCT02222883.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-107353DOI Listing
December 2020

Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk.

Am J Hum Genet 2020 11 5;107(5):837-848. Epub 2020 Oct 5.

Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; Hong Kong Sanatorium and Hospital, Department of Pathology, Happy Valley, Hong Kong.

Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS) and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer from 1990 onward with follow-up from the Breast Cancer Association Consortium. Metachronous CBC risk (N = 1,027) according to the distribution of PRS was quantified using Cox regression analyses. We assessed PRS interaction with age at first diagnosis, family history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited follow-up, CBC risk associated with PRS was assessed using logistic regression for 340 women with CBC compared with 12,133 women with unilateral breast cancer. Higher PRS was associated with increased CBC risk: hazard ratio per standard deviation (SD) = 1.25 (95%CI = 1.18-1.33) for Europeans, and an OR per SD = 1.15 (95%CI = 1.02-1.29) for Asians. The absolute lifetime risks of CBC, accounting for death as competing risk, were 12.4% for European women at the 10 percentile and 20.5% at the 90 percentile of PRS. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor, or treatment. The C-index for the PRS alone was 0.563 (95%CI = 0.547-0.586). In conclusion, PRS is an independent factor associated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance and treatment strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.09.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675034PMC
November 2020

Association of germline variation with the survival of women with pathogenic variants and breast cancer.

NPJ Breast Cancer 2020 10;6:44. Epub 2020 Sep 10.

Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada.

Germline genetic variation has been suggested to influence the survival of breast cancer patients independently of tumor pathology. We have studied survival associations of genetic variants in two etiologically unique groups of breast cancer patients, the carriers of germline pathogenic variants in or genes. We found that rs57025206 was significantly associated with the overall survival, predicting higher mortality of carrier patients with estrogen receptor-negative breast cancer, with a hazard ratio 4.37 (95% confidence interval 3.03-6.30,  = 3.1 × 10). Multivariable analysis adjusted for tumor characteristics suggested that rs57025206 was an independent survival marker. In addition, our exploratory analyses suggest that the associations between genetic variants and breast cancer patient survival may depend on tumor biological subgroup and clinical patient characteristics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-020-00185-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483417PMC
September 2020

Prevalence of and Mutations in Patients with Primary Ovarian Cancer - Does the German Checklist for Detecting the Risk of Hereditary Breast and Ovarian Cancer Adequately Depict the Need for Consultation?

Geburtshilfe Frauenheilkd 2020 Sep 2;80(9):932-940. Epub 2020 Sep 2.

Abteilung für Gynäkologie und Gynäkologische Onkologie, Evang. Kliniken Essen-Mitte, Essen.

mutations are the leading cause of hereditary epithelial ovarian cancer (EOC). The German Consortium for Hereditary Breast and Ovarian Cancer has defined inclusion criteria, which are retrievable as a checklist and facilitate genetic counselling/testing for affected persons with a mutation probability of ≥ 10%. Our objective was to evaluate the prevalence of the mutation(s) based on the checklist score (CLS). A retrospective data analysis was performed on EOC patients with a primary diagnosis treated between 1/2011 - 5/2019 at the Central Essen Clinics, where a genetic analysis result and a CLS was available. Out of 545 cases with a result (cohort A), 453 cases additionally had an extended gene panel result (cohort B). A mutation was identified in 23.3% (127/545) in cohort A, pathogenic mutations in non- genes were revealed in a further 6.2% in cohort B. In cohort A, 23.3% (127/545) of patients had a (n = 92) or (n = 35) mutation. Singular EOC (CLS 2) was present in 40.9%. The prevalence for a mutation in cohort A was 10.8%, 17.2%, 25.0%, 35.1%, 51.4% and 66.7% for patients with CLS 2, 3, 4, 5, 6 and ≥ 7 respectively. The mutation prevalence in cohort B was 15.9%, 16.4%, 28.2%, 40.4%, 44.8% and 62.5% for patients with CLS 2, 3, 4, 5, 6 and ≥ 7 respectively. The mutation prevalence in EOC patients positively correlates with a rising checklist score. Already with singular EOC, the prevalence of a mutation exceeds the required 10% threshold. Our data support the recommendation of the S3 guidelines Ovarian Cancer of offering genetic testing to all patients with EOC. Optimisation of the checklist with clear identification of the testing indication in this population should therefore be aimed for.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1222-0042DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467803PMC
September 2020

Olaparib for metastatic breast cancer in a patient with a germline variant.

NPJ Breast Cancer 2020 24;6:31. Epub 2020 Jul 24.

Interdisciplinary Breast Unit, Kliniken Essen-Mitte, Essen, Germany.

There is a strong biologic rationale that poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors may benefit a broader range of metastatic breast cancer (MBC) patients than covered by current approvals, which require a germline sequence variant affecting function. We report a patient with germline/somatic wild-type MBC, who had a dramatic response to the PARP inhibitor olaparib of at least 8 months' duration. The patient is a 37-year-old woman with recurrent, hormone receptor-positive, HER2-negative MBC that had progressed despite hormonal therapy and palbociclib. Sensitivity to olaparib was likely conferred by a germline sequence variant affecting function in (exon 1, c.18G>T, p.(=)). This case documenting activity of olaparib monotherapy in germline/somatic wild-type MBC illustrates that the clinical potential of PARP inhibition in MBC extends beyond currently approved indications to additional patients whose tumors have (epi)genetic changes affecting homologous recombination repair.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-020-00174-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382468PMC
July 2020

Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants.

Genet Med 2020 10 15;22(10):1653-1666. Epub 2020 Jul 15.

Royal Devon & Exeter Hospital, Department of Clinical Genetics, Exeter, UK.

Purpose: We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers.

Methods: Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort.

Results: The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10) carriers. The associations in the prospective cohort were similar.

Conclusion: Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0862-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521995PMC
October 2020

Characterization of the Cancer Spectrum in Men With Germline BRCA1 and BRCA2 Pathogenic Variants: Results From the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).

JAMA Oncol 2020 08;6(8):1218-1230

Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Importance: The limited data on cancer phenotypes in men with germline BRCA1 and BRCA2 pathogenic variants (PVs) have hampered the development of evidence-based recommendations for early cancer detection and risk reduction in this population.

Objective: To compare the cancer spectrum and frequencies between male BRCA1 and BRCA2 PV carriers.

Design, Setting, And Participants: Retrospective cohort study of 6902 men, including 3651 BRCA1 and 3251 BRCA2 PV carriers, older than 18 years recruited from cancer genetics clinics from 1966 to 2017 by 53 study groups in 33 countries worldwide collaborating through the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Clinical data and pathologic characteristics were collected.

Main Outcomes And Measures: BRCA1/2 status was the outcome in a logistic regression, and cancer diagnoses were the independent predictors. All odds ratios (ORs) were adjusted for age, country of origin, and calendar year of the first interview.

Results: Among the 6902 men in the study (median [range] age, 51.6 [18-100] years), 1634 cancers were diagnosed in 1376 men (19.9%), the majority (922 of 1,376 [67%]) being BRCA2 PV carriers. Being affected by any cancer was associated with a higher probability of being a BRCA2, rather than a BRCA1, PV carrier (OR, 3.23; 95% CI, 2.81-3.70; P < .001), as well as developing 2 (OR, 7.97; 95% CI, 5.47-11.60; P < .001) and 3 (OR, 19.60; 95% CI, 4.64-82.89; P < .001) primary tumors. A higher frequency of breast (OR, 5.47; 95% CI, 4.06-7.37; P < .001) and prostate (OR, 1.39; 95% CI, 1.09-1.78; P = .008) cancers was associated with a higher probability of being a BRCA2 PV carrier. Among cancers other than breast and prostate, pancreatic cancer was associated with a higher probability (OR, 3.00; 95% CI, 1.55-5.81; P = .001) and colorectal cancer with a lower probability (OR, 0.47; 95% CI, 0.29-0.78; P = .003) of being a BRCA2 PV carrier.

Conclusions And Relevance: Significant differences in the cancer spectrum were observed in male BRCA2, compared with BRCA1, PV carriers. These data may inform future recommendations for surveillance of BRCA1/2-associated cancers and guide future prospective studies for estimating cancer risks in men with BRCA1/2 PVs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaoncol.2020.2134DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333177PMC
August 2020

Cancer surveillance and distress among adult pathogenic TP53 germline variant carriers in Germany: A multicenter feasibility and acceptance survey.

Cancer 2020 09 18;126(17):4032-4041. Epub 2020 Jun 18.

Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany.

Background: Li-Fraumeni syndrome (LFS) is a high-risk cancer predisposition syndrome caused by pathogenic germline variants of TP53. Cancer surveillance has noted a significant survival advantage in individuals with LFS; however, little is known about the feasibility, acceptance, and psychosocial effects of such a program.

Methods: Pathogenic TP53 germline variant carriers completed a 7-part questionnaire evaluating sociodemographics, cancer history, surveillance participation, reasons for nonadherence, worries, and distress adapted from the Cancer Worry Scale. Counselees' common concerns and suggestions were assessed in MAXQDA Analytics Pro 12.

Results: Forty-nine participants (46 females and 3 males), aged 40.0 ± 12.6 years, formed the study population; 43 (88%) had a personal cancer history (including multiple cancers in 10 [20%]). Forty-three individuals participated (88%) in surveillance during the study or formerly. Willingness to undergo surveillance was influenced by satisfaction with genetic testing and counseling (P = .019 [Fisher-Yates test]) but not by sociodemographics, cancer history, or distress level. Almost one-third of the participants reported logistical difficulties in implementing surveillance because of the high frequency of medical visits, scheduling difficulties, and the travel distance to their surveillance providers. Self-reported distress and perceived emotional burden for family members and partners were moderate (median for self-reported distress, 3.3; median for perceived emotional burden, 3.0). For both, the interquartile range was moderate to very high (2.7-3.7 and 3.0-3.7, respectively).

Conclusions: Individuals with LFS require efficient counseling as well as an accessible, well-organized, interdisciplinary, standardized surveillance program to increase adherence and psychological coping.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cncr.33004DOI Listing
September 2020

Personalized early detection and prevention of breast cancer: ENVISION consensus statement.

Nat Rev Clin Oncol 2020 11 18;17(11):687-705. Epub 2020 Jun 18.

Department of Public Health, Erasmus MC, Rotterdam, Netherlands.

The European Collaborative on Personalized Early Detection and Prevention of Breast Cancer (ENVISION) brings together several international research consortia working on different aspects of the personalized early detection and prevention of breast cancer. In a consensus conference held in 2019, the members of this network identified research areas requiring development to enable evidence-based personalized interventions that might improve the benefits and reduce the harms of existing breast cancer screening and prevention programmes. The priority areas identified were: 1) breast cancer subtype-specific risk assessment tools applicable to women of all ancestries; 2) intermediate surrogate markers of response to preventive measures; 3) novel non-surgical preventive measures to reduce the incidence of breast cancer of poor prognosis; and 4) hybrid effectiveness-implementation research combined with modelling studies to evaluate the long-term population outcomes of risk-based early detection strategies. The implementation of such programmes would require health-care systems to be open to learning and adapting, the engagement of a diverse range of stakeholders and tailoring to societal norms and values, while also addressing the ethical and legal issues. In this Consensus Statement, we discuss the current state of breast cancer risk prediction, risk-stratified prevention and early detection strategies, and their implementation. Throughout, we highlight priorities for advancing each of these areas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41571-020-0388-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567644PMC
November 2020

Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk.

Sci Rep 2020 06 16;10(1):9688. Epub 2020 Jun 16.

Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany.

In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-65665-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297796PMC
June 2020

Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses.

Nat Genet 2020 06 18;52(6):572-581. Epub 2020 May 18.

Molecular Medicine Unit, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.

Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0609-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808397PMC
June 2020