Publications by authors named "Rita Reig-Viader"

9 Publications

  • Page 1 of 1

SynGAP splice variants display heterogeneous spatio-temporal expression and subcellular distribution in the developing mammalian brain.

J Neurochem 2020 09 10;154(6):618-634. Epub 2020 Mar 10.

Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.

The SynGAP protein is a major regulator of synapse biology and neural circuit function. Genetic variants linked to epilepsy and intellectual disability disrupt synaptic function and neural excitability. SynGAP has been involved in multiple signaling pathways and can regulate small GTPases with very different roles. Yet, the molecular bases behind this pleiotropy are poorly understood. We hypothesize that different SynGAP isoforms will mediate different sets of functions and that deciphering their spatio-temporal expression and subcellular localization will accelerate understanding their multiple functions. Using isoform-specific antibodies recognizing SynGAP in mouse and human samples we found distinctive developmental expression patterns for all SynGAP isoforms in five mouse brain areas. Particularly noticeable was the delayed expression of SynGAP-α1 isoforms, which directly bind to postsynaptic density-95, in cortex and hippocampus during the first 2 weeks of postnatal development. Suggesting that during this period other isoforms would have a more prominent role. Furthermore, we observed subcellular localization differences between isoforms, particularly throughout postnatal development. Consistent with previous reports, SynGAP was enriched in the postsynaptic density in the mature forebrain. However, SynGAP was predominantly found in non-synaptic locations in a period of early postnatal development highly sensitive to SynGAP levels. While, α1 isoforms were always found enriched in the postsynaptic density, α2 isoforms changed from a non-synaptic to a mostly postsynaptic density localization with age and β isoforms were always found enriched in non-synaptic locations. The differential expression and subcellular distribution of SynGAP isoforms may contribute to isoform-specific regulation of small GTPases, explaining SynGAP pleiotropy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.14988DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754318PMC
September 2020

SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse.

Neuron 2019 07 3;103(2):217-234.e4. Epub 2019 Jun 3.

Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands. Electronic address:

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2019.05.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764089PMC
July 2019

Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events.

Elife 2018 11 22;7. Epub 2018 Nov 22.

Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain.

Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.35774DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307864PMC
November 2018

Synaptic proteomics as a means to identify the molecular basis of mental illness: Are we getting there?

Prog Neuropsychopharmacol Biol Psychiatry 2018 06 20;84(Pt B):353-361. Epub 2017 Sep 20.

Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain\. Electronic address:

Synapses are centrally involved in many brain disorders, particularly in psychiatric and neurodevelopmental ones. However, our current understanding of the proteomic alterations affecting synaptic performance in the majority of mental illnesses is limited. As a result, novel pharmacotherapies with improved neurological efficacy have been scarce over the past decades. The main goal of synaptic proteomics in the context of mental illnesses is to identify dysregulated molecular mechanisms underlying these conditions. Here we reviewed and performed a meta-analysis of previous neuroproteomic research to identify proteins that may be consistently dysregulated in one or several mental disorders. Notably, we found very few proteins reproducibly altered among independent experiments for any given condition or between conditions, indicating that we are still far from identifying key pathophysiological mechanisms of mental illness. We suggest that future research in the field will require higher levels of standardization and larger-scale experiments to address the challenge posed by biological and methodological variability. We strongly believe that more resources should be placed in this field as the need to identify the molecular roots of mental illnesses is highly pressing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2017.09.011DOI Listing
June 2018

Evolution of complexity in the zebrafish synapse proteome.

Nat Commun 2017 03 2;8:14613. Epub 2017 Mar 2.

Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh EH16 4SB, UK.

The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms14613DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337974PMC
March 2017

Telomere homeostasis in mammalian germ cells: a review.

Chromosoma 2016 Jun 2;125(2):337-51. Epub 2015 Nov 2.

Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, 08193, Cerdanyola del Vallès, Spain.

Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00412-015-0555-4DOI Listing
June 2016

Telomere homeostasis is compromised in spermatocytes from patients with idiopathic infertility.

Fertil Steril 2014 Sep 1;102(3):728-738.e1. Epub 2014 Jul 1.

Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, Spain; Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, Spain. Electronic address:

Objective: To study whether the telomere structure of germ cells from idiopathic infertile men is altered and if this impairment is influenced by meiotic recombination and telomere length.

Design: We performed a detailed analysis of both telomeric repeat-containing RNA (TERRA) and telomerase distribution in testis cell spreads by combining immunofluorescence and RNA fluorescent in situ hybridization. In addition we analyzed meiotic recombination between homologous chromosomes by immunofluorescence and telomere length by quantitative fluorescent in situ hybridization.

Setting: University.

Patient(s): Men consulting for fertility problems.

Intervention(s): Unilateral testicular biopsies.

Main Outcome Measure(s): We observed that TERRA levels and its nuclear distribution were compromised in infertile patients. In addition, the presence of the protein component of telomerase at telomeres decreased in the affected patients. However, neither telomerase-TERRA association nor telomere length was altered in spermatocytes I of infertile samples compared with control individuals. In addition, we observed that meiotic recombination was reduced in infertile individuals.

Result(s): Telomere homeostasis is impaired in infertile patients, and this was translated into a decrease in TERRA levels together with an alteration of the TERRA-protein component of telomerase telomeric association in primary spermatocytes.

Conclusion(s): This study demonstrates for the first time that telomere structure and homeostasis in germ cells is compromised in infertile individuals. In the light of our results we propose that the analysis of telomeric structure (i.e., TERRA levels and telomere association with TERRA and telomerase) would provide new tools for our understanding of the origin of human infertility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2014.06.005DOI Listing
September 2014

Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis.

Biol Reprod 2014 May 9;90(5):103. Epub 2014 Apr 9.

Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, Spain Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, Spain

Telomeres are ribonucleoprotein structures at the end of chromosomes composed of telomeric DNA, specific-binding proteins, and noncoding RNA (TERRA). Despite their importance in preventing chromosome instability, little is known about the cross talk between these three elements during the formation of the germ line. Here, we provide evidence that both TERRA and the telomerase enzymatic subunit (TERT) are components of telomeres in mammalian germ cells. We found that TERRA colocalizes with telomeres during mammalian meiosis and that its expression progressively increases during spermatogenesis until the beginning of spermiogenesis. While both TERRA levels and distribution would be regulated in a gender-specific manner, telomere-TERT colocalization appears to be regulated based on species-specific characteristics of the telomeric structure. Moreover, we found that TERT localization at telomeres is maintained throughout spermatogenesis as a structural component without affecting telomere elongation. Our results represent the first evidence of colocalization between telomerase and telomeres during mammalian gametogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.113.116954DOI Listing
May 2014

Telomeric repeat-containing RNA and telomerase in human fetal oocytes.

Hum Reprod 2013 02 9;28(2):414-22. Epub 2012 Oct 9.

Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès 08193, Spain.

Study Question: What is the distribution of telomeric repeat-containing RNA (TERRA) and of telomerase in human fetal oocytes?

Summary Answer: TERRA forms discrete foci at telomeres of human fetal oocytes and it co-localizes with both the shelterin component telomeric repeat-binding factor 2 (TRF2) and the catalytic subunit of human telomerase at the telomeres of meiotic chromosomes.

What Is Known Already: TERRA is a structural element of the telomeric chromatin that has been described in somatic cells of many different eukaryote species. The telomerase enzyme is inactive in adult somatic cells but is active in germ cells, stem cells and in the majority of tumors; however, its distribution in oocytes is still unknown.

Study Design, Size, Duration: For this study, ovarian samples from four euploid fetuses of 22 gestational weeks were used. These samples were obtained with the consent of the parents and of the Ethics Committee of Hospital de la Vall d'Hebron.

Participants/materials, Setting, Methods: We analyzed the distribution of TERRA and telomerase in cells derived from human fetal ovaries. The co-localization of TERRA, telomerase and telomeres was performed by optimizing a combination of immunofluorescence (IF) and RNA-fluorescent in situ hybridization (RNA-FISH) techniques. The synaptonemal complex protein 3 (SYCP3), TRF2 and protein component of telomerase [telomerase reverse transcriptase (TERT)] were detected by IF, whereas TERRA was revealed by RNA-FISH using a (CCCTAA)(3) oligonucleotide. SYCP3 signals allowed us to identify oocytes that had entered meiosis and classify them into the different stages of prophase I, whereas TRF2 indicated the telomeric regions of chromosomes.

Main Results And The Role Of Chance: We show for the first time the presence of TERRA and the intracellular distribution of telomerase in human fetal ovarian cells. TERRA is present, forming discrete foci, in 75% of the ovarian tissue cells and most of TERRA molecules (≈ 83%) are at telomeres (TRF2 co-localization). TERRA levels are higher in oocytes than in ovarian tissue cells (P = 0.00), and do not change along the progression of the prophase I stage (P = 0.37). TERRA is present on ≈ 23% of the telomeres in all cell types derived from human fetal ovaries. Moreover, ≈ 22% of TERRA foci co-localize with the protein component of telomerase (TERT).

Limitations, Reasons For Caution: We present a descriptive/qualitative study of TERRA in human fetal ovarian tissue. Given the difficult access and manipulation of fetal samples, the number of fetal ovaries used in this study was limited.

Wider Implications Of The Findings: This is the first report on TERRA expression in oocytes from human fetal ovaries. The presence of TERRA at the telomeres of oocytes from the leptotene to pachytene stages and its co-localization with the telomerase protein component suggests that this RNA might participate in the maintenance of the telomere structure, at least through the processes that take place during the female meiotic prophase I. Since telomeres in oocytes have been mainly studied regarding the bouquet structure, our results introduce a new viewpoint of the telomeric structure during meiosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/des363DOI Listing
February 2013