Publications by authors named "Rikke S Kamper"

4 Publications

  • Page 1 of 1

Assessment of functional sit-to-stand muscle power: Cross-sectional trajectories across the lifespan.

Exp Gerontol 2021 Sep 9;152:111448. Epub 2021 Jun 9.

Geriatric Research Unit, Geriatric Department, Bispebjerg University Hospital, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet-Glostrup University Hospital, Copenhagen, Denmark; Geriatric Research Unit, Department of Internal Medicine, Herlev-Gentofte University Hospital, Copenhagen, Denmark. Electronic address:

Background: The 30-s sit-to-stand (STS) muscle power test is a valid test to assess muscle power in older people; however, whether it may be used to assess trajectories of lower-limb muscle power through the adult lifespan is not known. This study evaluated the pattern and time course of variations in relative, allometric and specific STS muscle power throughout the lifespan.

Methods: Subjects participating in the Copenhagen Sarcopenia Study (729 women and 576 men; aged 20 to 93 years) were included. Lower-limb muscle power was assessed with the 30-s version of the STS muscle power test. Allometric, relative and specific STS power were calculated as absolute STS power normalized to height squared, body mass and leg lean mass as assessed by DXA, respectively.

Results: Relative STS muscle power tended to increase in women (0.08 ± 0.05 W·kg·yr; p = 0.082) and increased in men (0.14 ± 0.07 W·kg·yr; p = 0.046) between 20 and 30 years, followed by a slow decline (-0.05 ± 0.05 W·kg·yr and -0.06 ± 0.08 W·kg·yr, respectively; both p > 0.05) between 30 and 50 years. Then, relative STS power declined at an accelerated rate up to oldest age in men (-0.09 ± 0.02 W·kg·yr) and in women until the age of 75 (-0.09 ± 0.01 W·kg·yr) (both p < 0.001). A lower rate of decline was observed in women aged 75 and older (-0.04 ± 0.02 W·kg·yr; p = 0.039). Similar age-related patterns were noted for allometric and specific STS power.

Conclusions: The STS muscle power test appears to provide a feasible and inexpensive tool to monitor cross-sectional trajectories of muscle power throughout the lifespan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2021.111448DOI Listing
September 2021

Biomarkers for length of hospital stay, changes in muscle mass, strength and physical function in older medical patients: protocol for the Copenhagen PROTECT study-a prospective cohort study.

BMJ Open 2020 12 29;10(12):e042786. Epub 2020 Dec 29.

Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark.

Introduction: Sarcopenia is generally used to describe the age-related loss of muscle mass and strength believed to play a major role in the pathogenesis of physical frailty and functional impairment that may occur with old age. The knowledge surrounding the prevalence and determinants of sarcopenia in older medical patients is scarce, and it is unknown whether specific biomarkers can predict physical deconditioning during hospitalisation. We hypothesise that a combination of clinical, functional and circulating biomarkers can serve as a risk stratification tool and can (i) identify older acutely ill medical patients at risk of prolonged hospital stays and (ii) predict changes in muscle mass, muscle strength and function during hospitalisation.

Method And Analysis: The Copenhagen PROTECT study is a prospective cohort study consisting of acutely ill older medical patients admitted to the acute medical ward at Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark. Assessments are performed within 24 hours of admission and include blood samples, body composition, muscle strength, physical function and questionnaires. A subgroup of patients transferred to the Geriatric Department are included in a smaller geriatric cohort and have additional assessments at discharge to evaluate the relative change in circulating biomarker concentrations, body composition, muscle strength and physical function during hospitalisation. Enrolment commenced 4 November 2019, and proceeds until August 2021.

Ethics And Dissemination: The study protocol has been approved by the local ethics committee of Copenhagen and Frederiksberg (H-19039214) and the Danish Data Protection Agency (P-2019-239) and all experimental procedures were performed in accordance with the Declaration of Helsinki. Findings from the project, regardless of the outcome, will be published in relevant peer-reviewed scientific journals in online (www.clinicaltrials.gov).

Trial Registration Number: NCT04151108.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmjopen-2020-042786DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778767PMC
December 2020

Relation between leg extension power and 30-s sit-to-stand muscle power in older adults: validation and translation to functional performance.

Sci Rep 2020 10 1;10(1):16337. Epub 2020 Oct 1.

Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark.

This study aimed to assess the validity and functional relevance of a standardized procedure to assess lower limb muscle power by means of the 30-s sit-to-stand (STS) test when compared to leg extension power (LEP), traditional STS performance and handgrip strength. A total of 628 community-dwelling older subjects (60-93 years) from the Copenhagen Sarcopenia Study were included. Physical performance was assessed by the 30-s STS and 10-m maximal gait speed tests. Handgrip strength and LEP were recorded by a hand-held dynamometer and the Nottingham power rig, respectively. STS muscle power was calculated using the subjects' body mass and height, chair height and the number of repetitions completed in the 30-s STS test. We found a small albeit significant difference between LEP and unilateral STS power in older men (245.5 ± 88.8 vs. 223.4 ± 81.4 W; ES = 0.26; p < 0.05), but not in older women (135.9 ± 51.9 vs. 138.5 ± 49.6 W; ES = 0.05; p > 0.05). Notably, a large positive correlation was observed between both measures (r = 0.75; p < 0.001). Relative STS power was more strongly related with maximal gait speed than handgrip strength, repetition-based STS performance and relative LEP after adjusting for age (r = 0.53 vs 0.35-0.45; p < 0.05). In conclusion, STS power obtained from the 30-s STS test appeared to provide a valid measure of bilateral lower limb power and was more strongly related with physical performance than maximal handgrip strength, repetition-based STS performance and LEP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-73395-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529789PMC
October 2020

Age- and Sex-Specific Changes in Lower-Limb Muscle Power Throughout the Lifespan.

J Gerontol A Biol Sci Med Sci 2020 06;75(7):1369-1378

Geriatric Research Unit, Geriatric Department, Bispebjerg University Hospital, Copenhagen, Denmark.

Background: Our main goal was to evaluate the pattern and time course of changes in relative muscle power and its constituting components throughout the life span.

Methods: A total of 1,305 subjects (729 women and 576 men; aged 20-93 years) participating in the Copenhagen Sarcopenia Study took part. Body mass index (BMI), leg lean mass assessed by dual-energy X-ray absorptiometry (DXA), and leg extension muscle power (LEP) assessed by the Nottingham power rig were recorded. Relative muscle power (normalized to body mass) and specific muscle power (normalized to leg lean mass) were calculated. Segmented regression analyses were used to identify the onset and pattern of age-related changes in the recorded variables.

Results: Relative muscle power began to decline above the age of 40 in both women and men, with women showing an attenuation of the decline above 75 years. Relative muscle power decreased with age due to (i) the loss of absolute LEP after the fourth decade of life and (ii) the increase in BMI up to the age of 75 years in women and 65 years in men. The decline in absolute LEP was caused by a decline in specific LEP up to the age of 75 in women and 65 in men, above which the loss in relative leg lean mass also contributed.

Conclusions: Relative power decreased (i) above 40 years by the loss in absolute power (specific power only) and the increase in body mass, and (ii) above ~70 years by the loss in absolute power (both specific power and leg lean mass).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glaa013DOI Listing
June 2020
-->