Publications by authors named "Richard Lookman"

9 Publications

  • Page 1 of 1

Sustainability appraisal tools for soil and groundwater remediation: how is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures?

Sci Total Environ 2014 Feb 14;470-471:954-66. Epub 2013 Nov 14.

Environmental Modelling Unit, VITO, Boeretang 200, 2400 Mol, Belgium; Department of Soil Management, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

The state-of-the-science in sustainability assessment of soil and groundwater remediation is evaluated with the application of four decision support systems (DSSs) to a large-scale brownfield revitalization case study. The DSSs were used to perform sustainability appraisals of four technically feasible remediation alternatives proposed for the site. The first stage of the review compares the scope of each tool's sustainability indicators, how these indicators are measured and how the tools differ in terms of standardization and weighting procedures. The second stage of the review compares the outputs from the tools and determines the key factors that result in differing results between tools. The evaluation of indicator sets and tool structures explains why the tools generate differing results. Not all crucial impact areas, as identified by sustainable remediation forums, are thoroughly considered by the tools, particularly with regard to the social and economic aspects of sustainability. Variations in boundary conditions defined between technologies, produce distorted environmental impact results, especially when in-situ and ex-situ technologies are compared. The review draws attention to the need for end users to be aware of which aspects of sustainability are considered, how the aspects are measured and how all aspects are ultimately balanced in the evaluation of potential remediation strategies. Existing tools can be improved by considering different technologies within the same boundary conditions and by expanding indicator sets to include indicators deemed to be relevant by remediation forums.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2013.10.044DOI Listing
February 2014

Combining HPLC-GCXGC, GCXGC/ToF-MS, and selected ecotoxicity assays for detailed monitoring of petroleum hydrocarbon degradation in soil and leaching water.

Environ Sci Technol 2009 Oct;43(20):7651-7

Flemish Institute for Technological Research (VITO), Mol, Belgium.

HPLC-GCXGC/FID (high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) and GCXGC/ToF-MS (comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry) were used to study the biodegradation of petroleum hydrocarbons in soil microcosms during 20 weeks. Two soils were studied: one spiked with fresh diesel and one field sample containing weathered diesel-like oil. Nutrient amended and unamended samples were included. Total petroleum hydrocarbon (TPH) levels in spiked soil decreased from 15,000 to 7,500 mg/kg d.m. and from 12,0O0 to 4,000 mg/kg d.m. in the field soil. Linear alkanes and aromatic hydrocarbons were better biodegradable (>60% degraded) than iso-alkanes; cycloalkanes were least degradable (<40%). Aromatic hydrocarbons up to three rings showed better degradability than n-alkanes. GCXGC/ToF-MS analysis of leaching water showed that initially various oxygenated hydrocarbons were produced. Compound peaks seemed to move up and rightward in the GCXGC chromatograms, indicating that more polar and heavier compounds were formed as biodegradation proceeded. Nutrient amendment can increase TPH removal rates, but had adverse effects on ecotoxicity and leaching potential in our experiment This was explained by observed shifts in the soil microbial community. Ecotoxicity assays showed that residual TPH still inhibited cress (Lepidium sativum) seed germination, but the leaching water was no longer toxic toward luminescent bacteria (Vibrio fischeri).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/es9015603DOI Listing
October 2009

Estimation of ecotoxicity of petroleum hydrocarbon mixtures in soil based on HPLC-GCXGC analysis.

Chemosphere 2009 Dec 30;77(11):1508-13. Epub 2009 Oct 30.

Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium.

Detailed HPLC-GCXGC/FID (high performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) analysis of oil-contaminated soils was performed to interpret results of selected acute ecotoxicity assays. For the five ecotoxicity assays tested, plant seed germination and Microtox were selected as most sensitive for evaluating ecotoxicity of the oil in the soil phase and in the leaching water, respectively. The measured toxicity for cress when testing the soil samples did not correspond to TPH concentration in the soil. A detailed chemical composition analysis of the oil contamination using HPLC-GCXGC/FID allows to better predict the ecotoxicological risk and leaching potential of petroleum hydrocarbons in soil. Cress biomass production per plant was well correlated to the total aromatic hydrocarbon concentration (R2=0.79, n=6), while cress seed germination was correlated (R2=0.82, n=6) with total concentration of "highly water-soluble aromatic hydrocarbons" (HSaromatics). The observed ecotoxicity of the leaching water for Microtox-bacteria related well to calculated (based on the HPLC-GCXGC/FID results) petroleum hydrocarbon equilibrium concentrations in water.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2009.10.004DOI Listing
December 2009

Factors determining the attenuation of chlorinated aliphatic hydrocarbons in eutrohic river sediment impacted by discharging polluted groundwater.

Environ Sci Technol 2009 Jul;43(14):5270-5

Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium.

This study explored the potential of eutrophic river sediment to attenuate the infiltration of chlorinated aliphatic hydrocarbon (CAH)-polluted groundwater discharging into the Zenne River near Brussels, Belgium. Active CAH biodegradation by reductive dechlorination in the sediment was suggested by a high dechlorination activity in microcosms containing sediment samples and the detection of dechlorination products in sediment pore water. A unique hydrogeochemical evaluation, including a delta2H and delta18O stable isotope approach, allowed to determine the contribution of different abiotic and biotic CAH attenuation processes and to delineate their spatial distribution inthe riverbed. Reductive dechlorination of the CAHs seemed to be the most widespread attenuation process, followed by dilution by unpolluted groundwater discharge and by surface water mixing. Although CAHs were never detected in the surface water, 26-28% of the investigated locations in the riverbed did not show CAH attenuation. We conclude that the riverbed sediments can attenuate infiltrating CAHs to a certain extent, but will probably not completely prevent CAHs to discharge from the contaminated groundwater into the Zenne River.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/es8035994DOI Listing
July 2009

Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography.

J Chromatogr A 2009 Feb 6;1216(9):1524-7. Epub 2009 Jan 6.

Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium.

Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLC-GCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29-C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.12.087DOI Listing
February 2009

Aqueous solubility calculation for petroleum mixtures in soil using comprehensive two-dimensional gas chromatography analysis data.

J Chromatogr A 2009 Apr 26;1216(14):2873-80. Epub 2008 Aug 26.

Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium.

An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.08.072DOI Listing
April 2009

High-performance liquid chromatography fractionation using a silver-modified column followed by two-dimensional comprehensive gas chromatography for detailed group-type characterization of oils and oil pollutions.

J Chromatogr A 2008 Jan 11;1179(1):33-40. Epub 2007 Oct 11.

Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, Belgium.

Successful remediation of oil-contaminated soils relies on a sound preceding characterization of the oil chemical composition and physicochemical properties. Comprehensive two-dimensional gas chromatography with flame ionization detection (GCxGC/FID) is known to be very suitable for the analysis of complex samples such as petroleum hydrocarbons. However, in spite of the high-separation power offered by GCxGC, it fails to completely separate certain hydrocarbon groups in petroleum hydrocarbon mixtures. This hampers a detailed chemical composition assessment which can lead to wrong conclusions on the behaviour of the oil in soil systems, e.g. biological degradability and water solubility. This paper describes a high-performance liquid chromatography (HPLC) system with a silver-modified column as a prefractionation step to GCxGC to improve chemical identification. With HPLC, the petroleum hydrocarbons were baseline separated into a saturated fraction (including alkanes and cycloalkanes) and an unsaturated fraction (including alkenes, aromatic hydrocarbons and heterocyclic components). Each fraction eluted in a small time window limiting the dilution caused by HPLC. The two fractions were collected and quantitatively analyzed with GCxGC/FID. Cold splitless injection of 4 microl was adopted to compensate the dilution caused by the prefractionation step. With oil-spiked soil samples, a good reproducibility was obtained (RSD=3.5%; n=7) and the recovery was satisfactory (87.7%).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2007.09.085DOI Listing
January 2008

Application of comprehensive two-dimensional gas chromatography for the assessment of oil contaminated soils.

J Chromatogr A 2006 Dec 20;1137(1):91-100. Epub 2006 Oct 20.

VITO, Boeretang 200, B-2400 Mol, Belgium.

A crucial step in the remediation of oil contaminated soils is the characterization of the pollution. Information on the chemical composition is used to assess the toxicity (and thus the need for remediation) and to determine the most appropriate technology for treatment. Mostly these analyses are carried out in routine environmental laboratories using gas chromatography with flame ionization detection (GC/FID) based on a protocol developed by the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG). In the present study, an alternative method was developed using comprehensive two-dimensional gas chromatography (GCXGC) with FID. Sample preparation was limited to pressurized liquid extraction (PLE), and the analysis was carried out on a commercially available instrument with a conventional column combination (RTX-1/BPX50) and with standard chromatographic software. Compared to the TPH method, the group-types in the GCXGC analysis are chemically better defined and more specific information is obtained especially for the (toxicologically important) aromatic hydrocarbon fraction. Preliminary results indicate that higher recoveries and lower RSDs are obtained with GCXGC, probably because of the less complex sample preparation. Furthermore a data processing method was developed to generate TPH results from GCXGC data; the volatility distribution profiles compared very well with conventional TPH data. The possibility of extracting physicochemical properties directly from the GCXGC chromatogram was briefly explored, but software limitations hindered this promising application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2006.10.014DOI Listing
December 2006

Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.

J Contam Hydrol 2004 Oct;74(1-4):133-44

Environmental Technology, Vito-Boeretang 200, Mol B-2400, Belgium.

Chlorinated aliphatic hydrocarbons are common groundwater contaminants. One possible remediation option is in-situ reductive dechlorination by zero-valent iron, either by direct injection or as reactive barriers. Chlorinated ethenes (tetrachloroethene: PCE; trichloroethene: TCE) have received extensive attention in this context. However, another common groundwater pollutant, 1,1,1-trichlorethane (TCA), has attracted much less attention. We studied TCA reduction by three types of granular zero-valent irons in a series of batch experiments using polluted groundwater, with and without added aquifer material. Two types of iron were able to reduce TCA completely with no daughter product concentration increases (1,1-dichloroethane: DCA; chloroethane: CA). One type of iron showed slower reduction, with intermediate rise of DCA and CA concentrations. When evaluating the formation of daughter products, the tests on the groundwater alone showed different results than the groundwater plus aquifer batches: DCA did not temporarily accumulate in the batches with added aquifer material, contrary to the batches without added aquifer material. 1,1-dichloroethene (DCE, also present in the groundwater as an abiotic degradation product of TCA) was also reduced slower in the batches without added aquifer material than in the batches with aquifer material. Redox potentials gradually decreased to low values in batches with aquifer material without iron, while the batches with groundwater alone maintained a constant higher redox potential. Either adsorption processes or microbiological activity in the samples could explain these phenomena. Polymerase Chain Reaction (PCR: a targeted gene probe technique) for chlorinated aliphatic compound (CAH)-degrading bacteria confirmed the presence of Dehalococcoides sp. (chloroethene-degraders) but was negative for Desulfobacterium autotrophicum (a known co-metabolic TCA degrader). DCA reduction was rate determining: first-order half-lives of 300-350 h were observed. TCA was fully removed within hours. CA is resistant to reduction by zero-valent iron but it is known to hydrolyze easily. Since CA did not accumulate in our batches, it may have disappeared by the latter mechanism or it may not have formed as a major daughter product.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2004.02.007DOI Listing
October 2004