Publications by authors named "Riccardo Sangermano"

14 Publications

  • Page 1 of 1

In or Out? New Insights on Exon Recognition through Splice-Site Interdependency.

Int J Mol Sci 2020 03 26;21(7). Epub 2020 Mar 26.

Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.

Noncanonical splice-site mutations are an important cause of inherited diseases. Based on in vitro and stem-cell-based studies, some splice-site variants show a stronger splice defect than expected based on their predicted effects, suggesting that other sequence motifs influence the outcome. We investigated whether splice defects due to human-inherited-disease-associated variants in noncanonical splice-site sequences in , , and could be rescued by strengthening the splice site on the other side of the exon. Noncanonical 5'- and 3'-splice-site variants were selected. Rescue variants were introduced based on an increase in predicted splice-site strength, and the effects of these variants were analyzed using in vitro splice assays in HEK293T cells. Exon skipping due to five variants in noncanonical splice sites of exons in , , and could be partially or completely rescued by increasing the predicted strengths of the other splice site of the same exon. We named this mechanism "splicing interdependency", and it is likely based on exon recognition by splicing machinery. Awareness of this interdependency is of importance in the classification of noncanonical splice-site variants associated with disease and may open new opportunities for treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21072300DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177576PMC
March 2020

Lactoferrin and oral pathologies: a therapeutic treatment.

Biochem Cell Biol 2021 Feb 26;99(1):81-90. Epub 2020 Mar 26.

Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy.

The oral cavity is a non-uniform, extraordinary environment characterized by mucosal, epithelial, abiotic surfaces and secretions as saliva. Aerobic and anaerobic commensal and pathogenic microorganisms colonize the tongue, teeth, jowl, gingiva, and periodontium. Commensals exert an important role in host defenses, while pathogenic microorganisms can nullify this protective function causing oral and systemic diseases. Every day, 750-1000 mL of saliva, containing several host defense constituents including lactoferrin (Lf), are secreted and swallowed. Lf is a multifunctional iron-chelating cationic glycoprotein of innate immunity. Depending on, or regardless of its iron-binding ability, Lf exerts bacteriostatic, bactericidal, antibiofilm, antioxidant, antiadhesive, anti-invasive, and anti-inflammatory activities. Here, we report the protective role of Lf in different oral pathologies, such as xerostomia, halitosis, alveolar or maxillary bone damage, gingivitis, periodontitis, and black stain. Unlike antibiotic therapy, which is ineffective against bacteria that are within a biofilm, adherent, or intracellular, the topical administration of Lf, through its simultaneous activity against microbial replication, biofilms, adhesion, and invasiveness, as well as inflammation, has been proven to be efficient in the treatment of all known oral pathologies without any adverse effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1139/bcb-2020-0052DOI Listing
February 2021

A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families.

Hum Mol Genet 2020 04;29(6):967-979

Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA.

Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddaa016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158377PMC
April 2020

Late-Onset Stargardt Disease Due to Mild, Deep-Intronic ABCA4 Alleles.

Invest Ophthalmol Vis Sci 2019 10;60(13):4249-4256

Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.

Purpose: To investigate the role of two deep-intronic ABCA4 variants, that showed a mild splice defect in vitro and can occur on the same allele as the low penetrant c.5603A>T, in Stargardt disease (STGD1).

Methods: Ophthalmic data were assessed of 18 STGD1 patients who harbored c.769-784C>T or c.4253+43G>A in combination with a severe ABCA4 variant. Subjects carrying c.[769-784C>T; 5603A>T] were clinically compared with a STGD1 cohort previously published carrying c.5603A>T noncomplex. We calculated the penetrances of the intronic variants using ABCA4 allele frequency data of the general population and investigated the effect of c.769-784C>T on splicing in photoreceptor progenitor cells (PPCs).

Results: Mostly, late-onset, foveal-sparing STGD1 was observed among subjects harboring c.769-784C>T or c.4253+43G>A (median age of onset, 54.5 and 52.0 years, respectively). However, ages of onset, phenotypes in fundo, and visual acuity courses varied widely. No significant clinical differences were observed between the c.[769-784C>T; 5603A>T] cohort and the c.4253+43G>A or the c.5603A>T cohort. The penetrances of c.769-784C>T (20.5%-39.6%) and c.4253+43G>A (35.8%-43.1%) were reduced, when not considering the effect of yet unidentified or known factors in cis, such as c.5603A>T (identified in 7/7 probands with c.769-784C>T; 1/8 probands with c.4253+43G>A). Variant c.769-784C>T resulted in a pseudo-exon insertion in 15% of the total mRNA (i.e., ∼30% of the c.769-784C>T allele alone).

Conclusions: Two mild intronic ABCA4 variants could further explain missing heritability in late-onset STGD1, distinguishing it from AMD. The observed clinical variability and calculated reduced penetrance urge research into modifiers within and outside of the ABCA4 gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.19-27524DOI Listing
October 2019

ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants.

Genet Med 2019 08 23;21(8):1761-1771. Epub 2019 Jan 23.

Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.

Purpose: ABCA4-associated disease, a recessive retinal dystrophy, is hallmarked by a large proportion of patients with only one pathogenic ABCA4 variant, suggestive for missing heritability.

Methods: By locus-specific analysis of ABCA4, combined with extensive functional studies, we aimed to unravel the missing alleles in a cohort of 67 patients (p), with one (p = 64) or no (p = 3) identified coding pathogenic variants of ABCA4.

Results: We identified eight pathogenic (deep-)intronic ABCA4 splice variants, of which five are novel and six structural variants, four of which are novel, including two duplications. Together, these variants account for the missing alleles in 40.3% of patients. Furthermore, two novel variants with a putative cis-regulatory effect were identified. The common hypomorphic variant c.5603A>T p.(Asn1868Ile) was found as a candidate second allele in 43.3% of patients. Overall, we have elucidated the missing heritability in 83.6% of our cohort. In addition, we successfully rescued three deep-intronic variants using antisense oligonucleotide (AON)-mediated treatment in HEK 293-T cells and in patient-derived fibroblast cells.

Conclusion: Noncoding pathogenic variants, novel structural variants, and a common hypomorphic allele of the ABCA4 gene explain the majority of unsolved cases with ABCA4-associated disease, rendering this retinopathy a model for missing heritability in autosomal recessive disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0420-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752479PMC
August 2019

Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.

Genet Med 2019 08 15;21(8):1751-1760. Epub 2019 Jan 15.

Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.

Purpose: Using exome sequencing, the underlying variants in many persons with autosomal recessive diseases remain undetected. We explored autosomal recessive Stargardt disease (STGD1) as a model to identify the missing heritability.

Methods: Sequencing of ABCA4 was performed in 8 STGD1 cases with one variant and p.Asn1868Ile in trans, 25 cases with one variant, and 3 cases with no ABCA4 variant. The effect of intronic variants was analyzed using in vitro splice assays in HEK293T cells and patient-derived fibroblasts. Antisense oligonucleotides were used to correct splice defects.

Results: In 24 of the probands (67%), one known and five novel deep-intronic variants were found. The five novel variants resulted in messenger RNA pseudoexon inclusions, due to strengthening of cryptic splice sites or by disrupting a splicing silencer motif. Variant c.769-784C>T showed partial insertion of a pseudoexon and was found in cis with c.5603A>T (p.Asn1868Ile), so its causal role could not be fully established. Variant c.4253+43G>A resulted in partial skipping of exon 28. Remarkably, antisense oligonucleotides targeting the aberrant splice processes resulted in (partial) correction of all splicing defects.

Conclusion: Our data demonstrate the importance of assessing noncoding variants in genetic diseases, and show the great potential of splice modulation therapy for deep-intronic variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0414-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752325PMC
August 2019

The Common ABCA4 Variant p.Asn1868Ile Shows Nonpenetrance and Variable Expression of Stargardt Disease When Present in trans With Severe Variants.

Invest Ophthalmol Vis Sci 2018 07;59(8):3220-3231

Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.

Purpose: To assess the occurrence and the disease expression of the common p.Asn1868Ile variant in patients with Stargardt disease (STGD1) harboring known, monoallelic causal ABCA4 variants.

Methods: The coding and noncoding regions of ABCA4 were sequenced in 67 and 63 STGD1 probands respectively, harboring monoallelic ABCA4 variants. In case p.Asn1868Ile was detected, segregation analysis was performed whenever possible. Probands and affected siblings harboring p.Asn1868Ile without additional variants in cis were clinically evaluated retrospectively. Two asymptomatic siblings carrying the same ABCA4 variants as their probands were clinically examined. The penetrance of p.Asn1868Ile was calculated using allele frequency data of ABCA4 variants in non-Finnish European individuals.

Results: The p.Asn1868Ile variant was found in cis with known variants in 14/67 probands. In 27/67 probands, we identified p.Asn1868Ile without additional variants in cis, in combination with known, mainly severe ABCA4 variants. In 23/27 probands, the trans configuration was established. Among 27 probands and 6/7 STGD1 siblings carrying p.Asn1868Ile, 42% manifested late-onset disease (>44 years). We additionally identified four asymptomatic relatives carrying a combination of a severe variant and p.Asn1868Ile; ophthalmologic examination in two persons did not reveal STGD1. Based on ABCA4 allele frequency data, we conservatively estimated the penetrance of p.Asn1868Ile, when present in trans with a severe variant, to be below 5%.

Conclusions: A significant fraction of genetically unexplained STGD1 cases carries p.Asn1868Ile as a second variant. Our findings suggest exceptional differences in disease expression or even nonpenetrance of this ABCA4 variant, pointing toward an important role for genetic or environmental modifiers in STGD1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.18-23881DOI Listing
July 2018

Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease.

Am J Hum Genet 2018 04 8;102(4):517-527. Epub 2018 Mar 8.

Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands. Electronic address:

Sequence analysis of the coding regions and splice site sequences in inherited retinal diseases is not able to uncover ∼40% of the causal variants. Whole-genome sequencing can identify most of the non-coding variants, but their interpretation is still very challenging, in particular when the relevant gene is expressed in a tissue-specific manner. Deep-intronic variants in ABCA4 have been associated with autosomal-recessive Stargardt disease (STGD1), but the exact pathogenic mechanism is unknown. By generating photoreceptor precursor cells (PPCs) from fibroblasts obtained from individuals with STGD1, we demonstrated that two neighboring deep-intronic ABCA4 variants (c.4539+2001G>A and c.4539+2028C>T) result in a retina-specific 345-nt pseudoexon insertion (predicted protein change: p.Arg1514Leufs36), likely due to the creation of exonic enhancers. Administration of antisense oligonucleotides (AONs) targeting the 345-nt pseudoexon can significantly rescue the splicing defect observed in PPCs of two individuals with these mutations. Intriguingly, an AON that is complementary to c.4539+2001G>A rescued the splicing defect only in PPCs derived from an individual with STGD1 with this but not the other mutation, demonstrating the high specificity of AONs. In addition, a single AON molecule rescued splicing defects associated with different neighboring mutations, thereby providing new strategies for the treatment of persons with STGD1. As many genes associated with human genetic conditions are expressed in specific tissues and pre-mRNA splicing may also rely on organ-specific factors, our approach to investigate and treat splicing variants using differentiated cells derived from individuals with STGD1 can be applied to any tissue of interest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.02.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985352PMC
April 2018

midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease.

Genome Res 2018 01 21;28(1):100-110. Epub 2017 Nov 21.

Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.

Stargardt disease is caused by variants in the gene, a significant part of which are noncanonical splice site (NCSS) variants. In case a gene of interest is not expressed in available somatic cells, small genomic fragments carrying potential disease-associated variants are tested for splice abnormalities using in vitro splice assays. We recently discovered that when using small minigenes lacking the proper genomic context, in vitro results do not correlate with splice defects observed in patient cells. We therefore devised a novel strategy in which a bacterial artificial chromosome was employed to generate midigenes, splice vectors of varying lengths (up to 11.7 kb) covering almost the entire gene. These midigenes were used to analyze the effect of all 44 reported and three novel NCSS variants on pre-mRNA splicing. Intriguingly, multi-exon skipping events were observed, as well as exon elongation and intron retention. The analysis of all reported NCSS variants in allowed us to reveal the nature of aberrant splicing events and to classify the severity of these mutations based on the residual fraction of wild-type mRNA. Our strategy to generate large overlapping splice vectors carrying multiple exons, creating a toolbox for robust and high-throughput analysis of splice variants, can be applied to all human genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.226621.117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749174PMC
January 2018

MIB2 variants altering NOTCH signalling result in left ventricle hypertrabeculation/non-compaction and are associated with Ménétrier-like gastropathy.

Hum Mol Genet 2017 01;26(1):33-43

Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.

We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddw365DOI Listing
January 2017

Photoreceptor Progenitor mRNA Analysis Reveals Exon Skipping Resulting from the ABCA4 c.5461-10T→C Mutation in Stargardt Disease.

Ophthalmology 2016 06 12;123(6):1375-85. Epub 2016 Mar 12.

Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands. Electronic address:

Purpose: To elucidate the functional effect of the ABCA4 variant c.5461-10T→C, one of the most frequent variants associated with Stargardt disease (STGD1).

Design: Case series.

Participants: Seventeen persons with STGD1 carrying ABCA4 variants and 1 control participant.

Methods: Haplotype analysis of 4 homozygotes and 11 heterozygotes for c.5461-10T→C and sequence analysis of the ABCA4 gene for a homozygous proband. Fibroblasts were reprogrammed from 3 persons with STGD1 into induced pluripotent stem cells, which were differentiated into photoreceptor progenitor cells (PPCs). The effect of the c.5461-10T→C variant on RNA splicing by reverse-transcription polymerase chain reaction was analyzed using PPC mRNA. In vitro assays were performed with minigene constructs containing ABCA4 exon 39. We analyzed the natural history and ophthalmologic characteristics of 4 persons homozygous for c.5461-10T→C.

Main Outcome Measures: Haplotype and rare variant data for ABCA4, RNA splice defects, age at diagnosis, visual acuity, fundus appearance, visual field, electroretinography (ERG) results, fluorescein angiography results, and fundus autofluorescence findings.

Results: The frequent ABCA4 variant c.5461-10T→C has a subtle effect on splicing based on prediction programs. A founder haplotype containing c.5461-10T→C was found to span approximately 96 kb of ABCA4 and did not contain other rare sequence variants. Patient-derived PPCs showed skipping of exon 39 or exons 39 and 40 in the mRNA. HEK293T cell transduction with minigenes carrying exon 39 showed that the splice defects were the result of the c.5461-10T→C variant. All 4 subjects carrying the c.5461-10T→C variant in a homozygous state showed a young age of STGD1 onset, with low visual acuity at presentation and abnormal cone ERG results. All 4 demonstrated severe cone-rod dystrophy before 20 years of age and were legally blind by 25 years of age.

Conclusions: The ABCA4 variant c.5461-10T→C is located on a founder haplotype lacking other disease-causing rare sequence variants. In vitro studies revealed that it leads to mRNA exon skipping and ABCA4 protein truncation. Given the severe phenotype in persons homozygous for this variant, we conclude that this variant results in the absence of ABCA4 activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ophtha.2016.01.053DOI Listing
June 2016

Heterozygous deep-intronic variants and deletions in ABCA4 in persons with retinal dystrophies and one exonic ABCA4 variant.

Hum Mutat 2015 Jan;36(1):43-7

Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.

Variants in ABCA4 are responsible for autosomal-recessive Stargardt disease and cone-rod dystrophy. Sequence analysis of ABCA4 exons previously revealed one causative variant in each of 45 probands. To identify the "missing" variants in these cases, we performed multiplex ligation-dependent probe amplification-based deletion scanning of ABCA4. In addition, we sequenced the promoter region, fragments containing five deep-intronic splice variants, and 15 deep-intronic regions containing weak splice sites. Heterozygous deletions spanning ABCA4 exon 5 or exons 20-22 were found in two probands, heterozygous deep-intronic variants were identified in six probands, and a deep-intronic variant was found together with an exon 20-22 deletion in one proband. Based on ophthalmologic findings and characteristics of the identified exonic variants present in trans, the deep-intronic variants V1 and V4 were predicted to be relatively mild and severe, respectively. These findings are important for proper genetic counseling and for the development of variant-specific therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.22717DOI Listing
January 2015

Mutations in MFSD8, encoding a lysosomal membrane protein, are associated with nonsyndromic autosomal recessive macular dystrophy.

Ophthalmology 2015 Jan 13;122(1):170-9. Epub 2014 Sep 13.

Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.

Purpose: This study aimed to identify the genetic defects in 2 families with autosomal recessive macular dystrophy with central cone involvement.

Design: Case series.

Participants: Two families and a cohort of 244 individuals with various inherited maculopathies and cone disorders.

Methods: Genome-wide linkage analysis and exome sequencing were performed in 1 large family with 5 affected individuals. In addition, exome sequencing was performed in the proband of a second family. Subsequent analysis of the identified mutations in 244 patients was performed by Sanger sequencing or restriction enzyme digestion. The medical history of individuals carrying the MFSD8 variants was reviewed and additional ophthalmic examinations were performed, including electroretinography (ERG), multifocal ERG (mfERG), perimetry, optical coherence tomography (OCT), fundus autofluorescence, and fundus photography.

Main Outcome Measures: MFSD8 variants, age at diagnosis, visual acuity, fundus appearance, color vision defects, visual field, ERG, mfERG, fundus autofluorescence, and OCT findings.

Results: Compound heterozygous variants in MFSD8, a gene encoding a lysosomal transmembrane protein, were identified in 2 families with macular dystrophy with a normal or subnormal ERG, but reduced mfERG. In both families, a heterozygous missense variant p.Glu336Gln was identified, which was predicted to have a mild effect on the protein. In the first family, a protein-truncating variant (p.Glu381*) was identified on the other allele, and in the second family, a variant (c.1102G>C) was identified that results in a splicing defect leading to skipping of exon 11 (p.Lys333Lysfs*3). The p.Glu336Gln allele was found to be significantly enriched in patients with maculopathies and cone disorders (6/488) compared with ethnically matched controls (35/18 682; P < 0.0001), suggesting that it may act as a genetic modifier.

Conclusions: In this study, we identified variants in MFSD8 as a novel cause of nonsyndromic autosomal recessive macular dystrophy with central cone involvement. Affected individuals showed no neurologic features typical for variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), a severe and devastating multisystem lysosomal storage disease previously associated with mutations in MFSD8. We propose a genotype-phenotype model in which a combination of a severe and a mild variant cause nonsyndromic macular dystrophy with central cone involvement, and 2 severe mutations cause vLINCL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ophtha.2014.07.040DOI Listing
January 2015

Autosomal dominant Ménétrier-like disease.

J Pediatr Gastroenterol Nutr 2012 Dec;55(6):717-20

Department of Pediatrics, Federico II University of Naples, Naples, Italy.

Background: Familial occurrence of Ménétrier disease is rare and has been reported only in few instances.

Methods: Affected patients from a large pedigree were evaluated at the clinical, endoscopic, and pathological levels.

Results: Affected members presented with gastropathy of variable severity but without protein loss. Endoscopy and pathology findings were consistent with Ménétrier disease; however, gastric transforming growth factor α (TGF-α) immunohistochemistry and real-time polymerase chain reaction showed no increase in TGF-α expression.

Conclusions: We describe a unique, 4-generation pedigree with autosomal dominant gastropathy exhibiting the typical clinical, endoscopic, and pathological findings of Ménétrier-like disease, though in the absence of protein loss and with no increase in the levels of gastric TGF-α. Members of this family may be affected by a novel and previously unrecognised hereditary form of gastric hyperplasia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPG.0b013e3182645c2fDOI Listing
December 2012