Publications by authors named "Renee E Vickman"

10 Publications

  • Page 1 of 1

Folate Receptor Beta Designates Immunosuppressive Tumor-Associated Myeloid Cells That Can Be Reprogrammed with Folate-Targeted Drugs.

Cancer Res 2021 02 17;81(3):671-684. Epub 2020 Nov 17.

Department of Chemistry, Purdue University, West Lafayette, Indiana.

Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRβ) within the TME and its restriction to the TME. This FRβ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8 T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRβ as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors. SIGNIFICANCE: FRβ serves as both a means to identify and target MDSCs and TAMs within the tumor, allowing for delivery of immunomodulatory compounds to tumor myeloid cells in a variety of cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-20-1414DOI Listing
February 2021

Deconstructing tumor heterogeneity: the stromal perspective.

Oncotarget 2020 Oct 6;11(40):3621-3632. Epub 2020 Oct 6.

Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA.

Significant advances have been made towards understanding the role of immune cell-tumor interplay in either suppressing or promoting tumor growth, progression, and recurrence, however, the roles of additional stromal elements, cell types and/or cell states remain ill-defined. The overarching goal of this NCI-sponsored workshop was to highlight and integrate the critical functions of non-immune stromal components in regulating tumor heterogeneity and its impact on tumor initiation, progression, and resistance to therapy. The workshop explored the opposing roles of tumor supportive suppressive stroma and how cellular composition and function may be altered during disease progression. It also highlighted microenvironment-centered mechanisms dictating indolence or aggressiveness of early lesions and how spatial geography impacts stromal attributes and function. The prognostic and therapeutic implications as well as potential vulnerabilities within the heterogeneous tumor microenvironment were also discussed. These broad topics were included in this workshop as an effort to identify current challenges and knowledge gaps in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.27736DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546755PMC
October 2020

The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review.

Asian J Urol 2020 Jul 19;7(3):191-202. Epub 2019 Oct 19.

Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA.

Benign prostatic hyperplasia (BPH) is a benign enlargement of the prostate in which incidence increases linearly with age, beginning at about 50 years old. BPH is a significant source of morbidity in aging men by causing lower urinary tract symptoms and acute urinary retention. Unfortunately, the etiology of BPH incidence and progression is not clear. This review highlights the role of the androgen receptor (AR) in prostate development and the evidence for its involvement in BPH. The AR is essential for normal prostate development, and individuals with defective AR signaling, such as after castration, do not experience prostate enlargement with age. Furthermore, decreasing dihydrotestosterone availability through therapeutic targeting with 5α-reductase inhibitors diminishes AR activity and results in reduced prostate size and symptoms in some BPH patients. While there is some evidence that AR expression is elevated in certain cellular compartments, how exactly AR is involved in BPH progression has yet to be elucidated. It is possible that AR signaling within stromal cells alters intercellular signaling and a "reawakening" of the embryonic mesenchyme, loss of epithelial AR leads to changes in paracrine signaling interactions, and/or chronic inflammation aids in stromal or epithelial proliferation evident in BPH. Unfortunately, a subset of patients fails to respond to current medical approaches, forcing surgical treatment even though age or associated co-morbidities make surgery less attractive. Fundamentally, new therapeutic approaches to treat BPH are not currently forthcoming, so a more complete molecular understanding of BPH etiology is necessary to identify new treatment options.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajur.2019.10.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385520PMC
July 2020

Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment.

Prostate 2020 02 25;80(2):173-185. Epub 2019 Nov 25.

Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois.

Background: Carcinoma-associated fibroblasts (CAF) are a heterogeneous group of cells within the tumor microenvironment (TME) that can promote tumorigenesis in the prostate. By understanding the mechanism(s) by which CAF contributes to tumor growth, new therapeutic targets for the management of this disease may be identified. These studies determined whether unique sub-populations of human prostate CAF can be identified and functionally characterized.

Methods: Single-cell RNA-seq of primary human prostate CAF followed by unsupervised clustering was utilized to generate cell clusters based on differentially expressed (DE) gene profiles. Potential communication between CAF and immune cells was analyzed using in vivo tissue recombination by combining CAF or normal prostate fibroblasts (NPF) with non-tumorigenic, initiated prostate epithelial BPH-1 cells. Resultant grafts were assessed for inflammatory cell recruitment.

Results: Clustering of 3321 CAF allows for visualization of six subpopulations, demonstrating heterogeneity within CAF. Sub-renal capsule recombination assays show that the presence of CAF significantly increases myeloid cell recruitment to resultant tumors. This is supported by significantly increased expression of chemotactic chemokines CCL2 and CXCL12 in large clusters compared to other subpopulations. Bayesian analysis topologies also support differential communication signals between chemokine-related genes of individual clusters. Migration of THP-1 monocyte cells in vitro is stimulated in the presence of CAF conditioned medium (CM) compared with NPF CM. Further in vitro analyses suggest that CAF-derived chemokine CCL2 may be responsible for CAF-stimulated migration of THP-1 cells, since neutralization of this chemokine abrogates migration capacity.

Conclusions: CAF clustering based on DE gene expression supports the concept that clusters have unique functions within the TME, including a role in immune/inflammatory cell recruitment. These data suggest that CCL2 produced by CAF may be involved in the recruitment of inflammatory cells, but may also directly regulate the growth of the tumor. Further studies aimed at characterizing the subpopulation(s) of CAF which promote immune cell recruitment to the TME and/or stimulate prostate cancer growth and progression will be pursued.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.23929DOI Listing
February 2020

Hyperglycemia and T Cell infiltration are associated with stromal and epithelial prostatic hyperplasia in the nonobese diabetic mouse.

Prostate 2019 06 18;79(9):980-993. Epub 2019 Apr 18.

Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois.

Background: Prostatic inflammation and various proinflammatory systemic comorbidities, such as diabetes and obesity are associated with human benign prostatic hyperplasia (BPH). There is a paucity of in vivo models reflecting specific aspects of BPH pathogenesis. Our aim was to investigate the nonobese diabetic (NOD) mouse as a potential model for subsequent intervention studies.

Materials And Methods: We used the NOD mouse, a model of autoimmune inflammation leading to type 1 diabetes to examine the effects of systemic inflammation and diabetes on the prostate. We assessed changes in prostatic histology, infiltrating leukocytes, and gene expression associated with aging and diabetic status.

Results: Both stromal expansion and epithelial hyperplasia were observed in the prostates. Regardless of diabetic status, the degree of prostatic hyperplasia varied. Local inflammation was associated with a more severe prostatic phenotype in both diabetic and nondiabetic mice. Testicular atrophy was noted in diabetic mice, but prostate glands showed persistent focal cell proliferation. In addition, a prostatic intraepithelial neoplasia (PIN)-like phenotype was seen in several diabetic animals with an associated increase in c-Myc and MMP-2 expression. To examine changes in gene and cytokine expression we performed microarray and cytokine array analysis comparing the prostates of diabetic and nondiabetic animals. Microarray analysis revealed several differentially expressed genes including CCL3, CCL12, and TNFS10. Cytokine array analysis revealed increased expression of cytokines and proteases such as LDLR, IL28 A/B, and MMP-2 in diabetic mice.

Conclusion: Overall, NOD mice provide a model to examine the effects of hyperglycemia and chronic inflammation on the prostate, demonstrating relevance to some of the mechanisms present underlying BPH and potentially the initiation of prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.23809DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591734PMC
June 2019

Cholesterol Sulfotransferase SULT2B1b Modulates Sensitivity to Death Receptor Ligand TNFα in Castration-Resistant Prostate Cancer.

Mol Cancer Res 2019 06 1;17(6):1253-1263. Epub 2019 Mar 1.

Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana.

Cholesterol sulfotransferase, SULT2B1b, has been demonstrated to modulate both androgen receptor activity and cell growth properties. However, the mechanism(s) by which SULT2B1b alters these properties within prostate cancer cells has not been described. Furthermore, specific advantages of SULT2B1b expression in prostate cancer cells are not understood. In these studies, single-cell mRNA sequencing was conducted to compare the transcriptomes of SULT2B1b knockdown (KD) versus Control KD LNCaP cells. Over 2,000 differentially expressed genes were identified along with alterations in numerous canonical pathways, including the death receptor signaling pathway. The studies herein demonstrate that SULT2B1b KD increases TNFα expression in prostate cancer cells and results in NF-κB activation in a TNF-dependent manner. More importantly, SULT2B1b KD significantly enhances TNF-mediated apoptosis in both TNF-sensitive LNCaP cells and TNF-resistant C4-2 cells. Overexpression of SULT2B1b in LNCaP cells also decreases sensitivity to TNF-mediated cell death, suggesting that SULT2B1b modulates pathways dictating the TNF sensitivity capacity of prostate cancer cells. Probing human prostate cancer patient datasets further supports this work by providing evidence that SULT2B1b expression is inversely correlated with TNF-related genes, including , and . Together, these data provide evidence that SULT2B1b expression in prostate cancer cells enhances resistance to TNF and may provide a growth advantage. In addition, targeting SULT2B1b may induce an enhanced therapeutic response to TNF treatment in advanced prostate cancer. IMPLICATIONS: These data suggest that SULT2B1b expression enhances resistance to TNF and may promote prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-18-1054DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548593PMC
June 2019

DGAT1 Inhibitor Suppresses Prostate Tumor Growth and Migration by Regulating Intracellular Lipids and Non-Centrosomal MTOC Protein GM130.

Sci Rep 2019 02 28;9(1):3035. Epub 2019 Feb 28.

Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, United States.

Acyl-CoA:diacylglycerol acyltransferase I (DGAT1) is a key enzyme in lipogenesis which is increased in metabolically active cells to meet nutrient requirements. DGAT1 has been recognized as an anti-obesity target; however, its role in the tumor microenvironment remains unclear. We postulated that, in prostate cancer (PCa) cells, augmented lipogenesis and growth are due to increased DGAT1 expression leading to microtubule-organizing center (MTOC) amplification. Thus, therapeutic targeting of DGAT1 potentially has tumor suppressive activity. We tested whether blocking DGAT1 in PCa cells altered MTOC and lipid signaling. Western blot and immunofluorescence were performed for MTOC and triglyceride mediators. Treatment with a DGAT1 inhibitor was evaluated. We found a stepwise increase in DGAT1 protein levels when comparing normal prostate epithelial cells to PCa cells, LNCaP and PC-3. Lipid droplets, MTOCs, and microtubule-regulating proteins were reduced in tumor cells treated with a DGAT1 inhibitor. Depletion of the non-centrosomal MTOC protein GM130 reduced PCa cell proliferation and migration. Inhibition of DGAT1 reduced tumor growth both in vitro and in vivo, and a negative feedback loop was discovered between DGAT1, PEDF, and GM130. These data identify DGAT1 as a promising new target for suppressing PCa growth by regulating GM130, MTOC number and disrupting microtubule integrity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-39537-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395665PMC
February 2019

Cholesterol Esterification Inhibition Suppresses Prostate Cancer Metastasis by Impairing the Wnt/β-catenin Pathway.

Mol Cancer Res 2018 06 15;16(6):974-985. Epub 2018 Mar 15.

Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana.

Dysregulation of cholesterol is a common characteristic of human cancers including prostate cancer. This study observed an aberrant accumulation of cholesteryl ester in metastatic lesions using Raman spectroscopic analysis of lipid droplets in human prostate cancer patient tissues. Inhibition of cholesterol esterification in prostate cancer cells significantly suppresses the development and growth of metastatic cancer lesions in both orthotopic and intracardiac injection mouse models. Gene expression profiling reveals that cholesteryl ester depletion suppresses the metastatic potential through upregulation of multiple regulators that negatively impact metastasis. In addition, Wnt/β-catenin, a vital pathway for metastasis, is downregulated upon cholesteryl ester depletion. Mechanistically, inhibition of cholesterol esterification significantly blocks secretion of Wnt3a through reduction of monounsaturated fatty acid levels, which limits Wnt3a acylation. These results collectively validate cholesterol esterification as a novel metabolic target for treating metastatic prostate cancer. .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-17-0665DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984676PMC
June 2018

Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.

Biochim Biophys Acta Gen Subj 2017 Aug 8;1861(8):1992-2006. Epub 2017 May 8.

Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA. Electronic address:

Background: Inhibition of Hsp90 is desirable due to potential downregulation of oncogenic clients. Early generation inhibitors bind to the N-terminal domain (NTD) but C-terminal domain (CTD) inhibitors are a promising class because they do not induce a heat shock response. Here we present a new structural class of CTD binding molecules with a unique allosteric inhibition mechanism.

Methods: A hit molecule, NSC145366, and structurally similar probes were assessed for inhibition of Hsp90 activities. A ligand-binding model was proposed indicating a novel Hsp90 CTD binding site. Client protein downregulation was also determined.

Results: NSC145366 interacts with the Hsp90 CTD and has anti-proliferative activity in tumor cell lines (GI=0.2-1.9μM). NSC145366 increases Hsp90 oligomerization resulting in allosteric inhibition of NTD ATPase activity (IC=119μM) but does not compete with NTD or CTD-ATP binding. Treatment of LNCaP prostate tumor cells resulted in selective client protein downregulation including AR and BRCA1 but without a heat shock response. Analogs had similar potencies in ATPase and chaperone activity assays and variable effects on oligomerization. In silico modeling predicted a binding site at the CTD dimer interface distinct from the nucleotide-binding site.

Conclusions: A set of symmetrical scaffold molecules with bisphenol A cores induced allosteric inhibition of Hsp90. Experimental evidence and molecular modeling suggest that the binding site is independent of the CTD-ATP site and consistent with unique induction of allosteric effects.

General Significance: Allosteric inhibition of Hsp90 via a mechanism used by the NSC145366-based probes is a promising avenue for selective oncogenic client downregulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2017.05.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453127PMC
August 2017

Cholesterol Sulfonation Enzyme, SULT2B1b, Modulates AR and Cell Growth Properties in Prostate Cancer.

Mol Cancer Res 2016 09 24;14(9):776-86. Epub 2016 Jun 24.

Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana. Purdue University Center for Cancer Research, West Lafayette, Indiana.

Unlabelled: Cholesterol accumulates in prostate lesions and has been linked to prostate cancer incidence and progression. However, how accumulated cholesterol contributes to prostate cancer development and progression is not completely understood. Cholesterol sulfate (CS), the primary sulfonation product of cholesterol sulfotransferase (SULT2B1b), accumulates in human prostate adenocarcinoma and precancerous prostatic intraepithelial neoplasia (PIN) lesions compared with normal regions of the same tissue sample. Given the enhanced accumulation of CS in these lesions, it was hypothesized that SULT2B1b-mediated production of CS provides a growth advantage to these cells. To address this, prostate cancer cells with RNAi-mediated knockdown (KD) of SULT2B1b were used to assess the impact on cell growth and survival. SULT2B1b is expressed and functional in a variety of prostate cells, and the data demonstrate that SULT2B1b KD, in LNCaP and other androgen-responsive (VCaP and C4-2) cells, results in decreased cell growth/viability and induces cell death. SULT2B1b KD also decreases androgen receptor (AR) activity and expression at mRNA and protein levels. While AR overexpression has no impact on SULT2B1b KD-mediated cell death, the addition of exogenous androgen is able to partially rescue the growth inhibition induced by SULT2B1b KD in LNCaP cells. These results suggest that SULT2B1b positively regulates the AR either through alterations in ligand availability or by interaction with critical coregulators that influence AR activity.

Implications: These findings provide evidence that SULT2B1b is a novel regulator of AR activity and cell growth in prostate cancer and should be further investigated for therapeutic potential. Mol Cancer Res; 14(9); 776-86. ©2016 AACR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-16-0137DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111871PMC
September 2016