Publications by authors named "Reena J Komalam"

2 Publications

  • Page 1 of 1

Diaminothiazoles evade multidrug resistance in cancer cells and xenograft tumour models and develop transient specific resistance: understanding the basis of broad-spectrum versus specific resistance.

Carcinogenesis 2015 Aug 25;36(8):883-93. Epub 2015 May 25.

Division of Cancer Research and Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India and Department of Chemistry, University of Kerala, Trivandrum, India

Acquired drug resistance poses a challenge in cancer therapy. Drug efflux is the most common mechanism of resistance displayed by hydrophobic drugs beyond a certain size. However, target specific changes and imbalance between the pro- and anti-apoptotic proteins are also found quite often in many tumours. A number of small antimitotic agents show high potential for multidrug resistant tumours, mainly because they are able to evade the efflux pumps. However, these compounds are also likely to suffer from resistance upon prolonged treatment. Thus, it is important to find out agents that are sensitive to resistant tumours and to know the resistance mechanisms against small molecules so that proper combinations can be planned. In this report, we have studied the efficiency of diaminothiazoles, a novel class of tubulin targeting potential anticancer compounds of small size, in multidrug resistant cancer. Studies in model cell lines raised against taxol and the lead diaminothiazole, DAT1 [4-amino-5-benzoyl-2-(4-methoxy phenyl amino) thiazole], and the xenograft tumours derived from them, show that diaminothiazoles are highly promising against multidrug resistant cancers. They were able to overcome the expression of efflux protein MDR1 and certain tubulin isotypes, could sensitize improper apoptotic machinery and ablated checkpoint proteins Bub1 and Mad2. Further, we have found that the resistance against microtubule binding compounds with higher size is broad-spectrum and emerges due to multiple factors including overexpression of transmembrane pumps. However, resistance against small molecules is transient, specific and is contributed by target specific changes and variations in apoptotic factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgv072DOI Listing
August 2015

Diaminothiazoles inhibit angiogenesis efficiently by suppressing Akt phosphorylation.

J Pharmacol Exp Ther 2012 Jun 13;341(3):718-24. Epub 2012 Mar 13.

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.

The prevention of neovessel formation or angiogenesis is a recent popular strategy for limiting and curing cancer. Diaminothiazoles are a class of compounds that have been reported to show promise in the treatment of cancer by inhibiting cancer cell proliferation and inducing apoptosis, because of their effects on microtubules and as inhibitors of cyclin-dependent kinases. Many microtubule-targeting agents are being studied for their antiangiogenic activity, and a few have shown promising activity in the treatment of cancer. Here, we report that diaminothiazoles can be highly effective as antiangiogenic agents, as observed in the chick membrane assay. The lead compound, 4-amino-5-benzoyl-2-(4-methoxyphenylamino)thiazole (DAT1), inhibits endothelial cell processes such as invasion, migration, and tubule formation, which require a functional cytoskeleton. DAT1 also decreases the expression of cell adhesion markers. The antiangiogenic activities of DAT1 occur at concentrations that are not cytotoxic to the normal endothelium. Analysis of intracellular signaling pathways shows that DAT1 inhibits Akt phosphorylation, which is actively involved in the angiogenic process. The antiangiogenic properties of diaminothiazoles, in addition to their promising antimitotic and cytotoxic properties in cancer cell lines, give them an extra advantage in the treatment of cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.112.192559DOI Listing
June 2012
-->