Publications by authors named "Rebecca Bernardos"

16 Publications

  • Page 1 of 1

Genomic insights into the formation of human populations in East Asia.

Nature 2021 Mar 22;591(7850):413-419. Epub 2021 Feb 22.

Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03336-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993749PMC
March 2021

A minimally destructive protocol for DNA extraction from ancient teeth.

Genome Res 2021 Mar 12;31(3):472-483. Epub 2021 Feb 12.

Institute of Archaeology, Research Centre for the Humanities, 1097 Budapest, Hungary.

Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.267534.120DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919446PMC
March 2021

Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia.

PLoS One 2021 28;16(1):e0244228. Epub 2021 Jan 28.

Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation.

The Central Siberian Plateau was the last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through a comprehensive dataset of mitochondrial DNA (mtDNA) genomes retained in the remnats of earlier ("Old") Siberians, primarily the Ket, Tofalar, and Todzhi, we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia (best represented by the Yukaghir) over the last 10,000 years. We generated 218 new complete mtDNA sequences and placed them into compound phylogenies with 7 newly obtained and 70 published ancient mitochondrial genomes. We have considerably extended the mtDNA sequence diversity (at the entire mtDNA genome level) of autochthonous Siberians, which remain poorly sampled, and these new data may have a broad impact on the study of human migration. We compared present-day mtDNA diversity in these groups with complete mitochondrial genomes from ancient samples from the region and placed the samples into combined genealogical trees. The resulting components were used to clarify the origins and expansion history of mtDNA lineages that evolved in the refugia of south-central Siberia and beyond, as well as multiple phases of connection between this region and distant parts of Eurasia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244228PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842996PMC
April 2021

A genetic history of the pre-contact Caribbean.

Nature 2021 02 23;590(7844):103-110. Epub 2020 Dec 23.

Department of Genetics, Harvard Medical School, Boston, MA, USA.

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large. Confirming a small and interconnected Ceramic Age population, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-03053-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864882PMC
February 2021

The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean.

Nat Ecol Evol 2020 03 24;4(3):334-345. Epub 2020 Feb 24.

Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria-Gobierno de Cantabria-Banco Santander, Santander, Spain.

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-020-1102-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080320PMC
March 2020

The formation of human populations in South and Central Asia.

Science 2019 09;365(6457)

Earth Institute, University College Dublin, Dublin 4, Ireland.

By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aat7487DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822619PMC
September 2019

Ancient DNA from the skeletons of Roopkund Lake reveals Mediterranean migrants in India.

Nat Commun 2019 08 20;10(1):3670. Epub 2019 Aug 20.

CSIR Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.

Situated at over 5,000 meters above sea level in the Himalayan Mountains, Roopkund Lake is home to the scattered skeletal remains of several hundred individuals of unknown origin. We report genome-wide ancient DNA for 38 skeletons from Roopkund Lake, and find that they cluster into three distinct groups. A group of 23 individuals have ancestry that falls within the range of variation of present-day South Asians. A further 14 have ancestry typical of the eastern Mediterranean. We also identify one individual with Southeast Asian-related ancestry. Radiocarbon dating indicates that these remains were not deposited simultaneously. Instead, all of the individuals with South Asian-related ancestry date to ~800 CE (but with evidence of being deposited in more than one event), while all other individuals date to ~1800 CE. These differences are also reflected in stable isotope measurements, which reveal a distinct dietary profile for the two main groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11357-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702210PMC
August 2019

Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa.

Science 2019 07 30;365(6448). Epub 2019 May 30.

Department of Anthropology, California State University, San Bernardino, CA 92407, USA.

How food production first entered eastern Africa ~5000 years ago and the extent to which people moved with livestock is unclear. We present genome-wide data from 41 individuals associated with Later Stone Age, Pastoral Neolithic (PN), and Iron Age contexts in what are now Kenya and Tanzania to examine the genetic impacts of the spreads of herding and farming. Our results support a multiphase model in which admixture between northeastern African-related peoples and eastern African foragers formed multiple pastoralist groups, including a genetically homogeneous PN cluster. Additional admixture with northeastern and western African-related groups occurred by the Iron Age. These findings support several movements of food producers while rejecting models of minimal admixture with foragers and of genetic differentiation between makers of distinct PN artifacts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaw6275DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827346PMC
July 2019

CrowdCurio: an online crowdsourcing platform to facilitate climate change studies using herbarium specimens.

New Phytol 2017 Jul 10;215(1):479-488. Epub 2017 Apr 10.

Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA, 20138, USA.

Phenology is a key aspect of plant success. Recent research has demonstrated that herbarium specimens can provide important information on plant phenology. Massive digitization efforts have the potential to greatly expand herbarium-based phenological research, but also pose a serious challenge regarding efficient data collection. Here, we introduce CrowdCurio, a crowdsourcing tool for the collection of phenological data from herbarium specimens. We test its utility by having workers collect phenological data (number of flower buds, open flowers and fruits) from specimens of two common New England (USA) species: Chelidonium majus and Vaccinium angustifolium. We assess the reliability of using nonexpert workers (i.e. Amazon Mechanical Turk) against expert workers. We also use these data to estimate the phenological sensitivity to temperature for both species across multiple phenophases. We found no difference in the data quality of nonexperts and experts. Nonexperts, however, were a more efficient way of collecting more data at lower cost. We also found that phenological sensitivity varied across both species and phenophases. Our study demonstrates the utility of CrowdCurio as a crowdsourcing tool for the collection of phenological data from herbarium specimens. Furthermore, our results highlight the insight gained from collecting large amounts of phenological data to estimate multiple phenophases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.14535DOI Listing
July 2017

Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis.

BMC Biol 2012 May 4;10:40. Epub 2012 May 4.

Biological Sciences, Smith College, Northampton, MA 01063, USA.

Unlabelled: The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity.

Results: WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil.

Conclusions: Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1741-7007-10-40DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364156PMC
May 2012

Vincristine and bortezomib cause axon outgrowth and behavioral defects in larval zebrafish.

J Peripher Nerv Syst 2012 Mar;17(1):76-89

Department of Biology, Williams College, Williamstown, MA, USA.

Peripheral neuropathy is a common side effect of a number of pharmaceutical compounds, including several chemotherapy drugs. Among these are vincristine sulfate, a mitotic inhibitor used to treat a variety of leukemias, lymphomas, and other cancers, and bortezomib, a 26S proteasome inhibitor used primarily to treat relapsed multiple myeloma and mantle cell lymphoma. To gain insight into the mechanisms by which these compounds act, we tested their effects in zebrafish. Vincristine or bortezomib given during late embryonic development caused significant defects at both behavioral and cellular levels. Intriguingly, the effects of the two drugs appear to be distinct. Vincristine causes uncoordinated swimming behavior, which is coupled with a reduction in the density of sensory innervation and overall size of motor axon arbors. Bortezomib, in contrast, increases the duration and amplitude of muscle contractions associated with escape swimming, which is coupled with a preferential reduction in fine processes and branches of sensory and motor axons. These results demonstrate that zebrafish is a convenient in vivo assay system for screening potential pharmaceutical compounds for neurotoxic side effects, and they provide an important step toward understanding how vincristine and bortezomib cause peripheral neuropathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1529-8027.2012.00371.xDOI Listing
March 2012

Analysis of glial cell development and function in Drosophila.

Cold Spring Harb Protoc 2012 Jan 1;2012(1):1-17. Epub 2012 Jan 1.

Glial cells are the most abundant cell type in our brains, yet we understand very little about their development and function. An accumulating body of work over the last decade has revealed that glia are critical regulators of nervous system development, function, and health. Based on morphological and molecular criteria, glia in Drosophila melanogaster are very similar to their mammalian counterparts, suggesting that a detailed investigation of fly glia has the potential to add greatly to our understanding of fundamental aspects of glial cell biology. In this article, we provide an overview of the subtypes of glial cells found in Drosophila and discuss our current understanding of their functions, the development of a subset of well-defined glial lineages, and the molecular-genetic tools available for manipulating glial subtypes in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.top067587DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193132PMC
January 2012

Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells.

J Neurosci 2007 Jun;27(26):7028-40

Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.

Neuronal progenitors in the mammalian brain derive from radial glia or specialized astrocytes. In developing neural retina, radial glia-like Müller cells are generated late in neurogenesis and are not considered to be neuronal progenitors, but they do proliferate after injury and can express neuronal markers, suggesting a latent neurogenic capacity. To examine the neurogenic capacity of retinal glial cells, we used lineage tracing in transgenic zebrafish with a glial-specific promoter (gfap, for glial fibrillary acid protein) driving green fluorescent protein in differentiated Müller glia. We found that all Müller glia in the zebrafish retina express low levels of the multipotent progenitor marker Pax6 (paired box gene 6), and they proliferate at a low frequency in the intact, uninjured retina. Müller glia-derived progenitors express Crx (cone rod homeobox) and are late retinal progenitors that generate the rod photoreceptor lineage in the postembryonic retina. These Müller glia-derived progenitors also remain competent to produce earlier neuronal lineages, in that they respond to loss of cone photoreceptors by specifically regenerating the missing neurons. We conclude that zebrafish Müller glia function as multipotent retinal stem cells that generate retinal neurons by homeostatic and regenerative developmental mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1624-07.2007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672216PMC
June 2007

Molecular characterization of retinal stem cells and their niches in adult zebrafish.

BMC Dev Biol 2006 Jul 26;6:36. Epub 2006 Jul 26.

Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

Background: The persistence in adult teleost fish of retinal stem cells that exhibit all of the features of true 'adult stem cells'--self-renewal, multipotency, and the capacity to respond to injury by mitotic activation with the ability to regenerate differentiated tissues--has been known for several decades. However, the specialized cellular and molecular characteristics of these adult retinal stem cells and the microenvironmental niches that support their maintenance in the differentiated retina and regulate their activity during growth and regeneration have not yet been elucidated.

Results: Our data show that the zebrafish retina has two kinds of specialized niches that sustain retinal stem cells: 1) a neuroepithelial germinal zone at the interface between neural retina and ciliary epithelium, called the ciliary marginal zone (CMZ), a continuous annulus around the retinal circumference, and 2) the microenvironment around some Müller glia in the differentiated retina. In the uninjured retina, scattered Müller glia (more frequently those in peripheral retina) are associated with clusters of proliferating retinal progenitors that are restricted to the rod photoreceptor lineage, but following injury, the Müller-associated retinal progenitors can function as multipotent retinal stem cells to regenerate other types of retinal neurons. The CMZ has several features in common with the neurogenic niches in the adult mammalian brain, including access to the apical epithelial surface and a close association with blood vessels. Müller glia in the teleost retina have a complex response to local injury that includes some features of reactive gliosis (up-regulation of glial fibrillary acidic protein, GFAP, and re-entry into the cell cycle) together with dedifferentiation and re-acquisition of phenotypic and molecular characteristics of multipotent retinal progenitors in the CMZ (diffuse distribution of N-cadherin, activation of Notch-Delta signaling, and expression of rx1, vsx2/Chx10, and pax6a) along with characteristics associated with radial glia (expression of brain lipid binding protein, BLBP). We also describe a novel specific marker for Müller glia, apoE.

Conclusion: The stem cell niches that support multi-lineage retinal progenitors in the intact, growing and regenerating teleost retina have properties characteristic of neuroepithelia and neurogenic radial glia. The regenerative capacity of the adult zebrafish retina with its ability to replace lost retinal neurons provides an opportunity to discover the molecular regulators that lead to functional repair of damaged neural tissue.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-213X-6-36DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1564002PMC
July 2006

GFAP transgenic zebrafish.

Gene Expr Patterns 2006 Oct 9;6(8):1007-13. Epub 2006 Jun 9.

Neuroscience Graduate Program, 4402 Kresge III, University of Michigan, Ann Arbor, MI 48109-0520, USA.

We have generated transgenic zebrafish that express green fluorescent protein (GFP) in glial cells driven by the zebrafish glial fibrillary acidic protein (GFAP) regulatory elements. Transgenic lines Tg(gfap:GFP) were generated from three founders; the results presented here are from the mi2001 line. GFP expression was first visible in the living embryo at the tail bud-stage, then in the developing brain by the 5-somite-stage ( approximately 12 h post-fertilization, hpf) and then spreading posteriorly along the developing spinal cord by the 12-somite stage (approximately 15 hpf). At 24 hpf GFP-expressing cells were in the retina and lens. By 72 hpf GFP expression levels were strong and localized to the glia of the brain, neural retina, spinal cord, and ventral spinal nerves, with moderate expression in the enteric nervous system and weaker levels in the olfactory sensory placode and otic capsule. GFP expression in glia co-localized with anti-GFAP antibodies, but did not co-localize with the neuronal antibodies HuC/D or calretinin in mature neurons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.modgep.2006.04.006DOI Listing
October 2006