Publications by authors named "Ratana Tacharoenmuang"

15 Publications

  • Page 1 of 1

Genomic characterization of a novel G3P[10] rotavirus strain from a diarrheic child in Thailand: Evidence for bat-to-human zoonotic transmission.

Infect Genet Evol 2021 Jan 5;87:104667. Epub 2020 Dec 5.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.

An unusual rotavirus strain with the G3P[10] genotype (RVA/Human-wt/THA/MS2015-1-0001/2015/G3P[10]) was identified in a stool sample from a hospitalized child aged 11 months with severe gastroenteritis in Thailand. In the current study, we sequenced and characterized the full genome of strain MS2015-1-0001. On full-genomic analysis, strain MS2015-1-0001 exhibited the following genotype configuration: G3-P[10]-I8-R3-C3-M3-A9-N3-T3-E3-H6, which is identical or closely related to those of bat and bat-like rotavirus strains (MYAS33-like). Furthermore, phylogenetic analysis revealed that all 11 genes of strain MS2015-1-0001 appeared to be of bat origin. Our findings provide evidence for bat-to-human interspecies transmission of rotaviruses and important insights into dynamic interactions between human and bat rotavirus strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2020.104667DOI Listing
January 2021

Full genome characterization of novel DS-1-like G9P[8] rotavirus strains that have emerged in Thailand.

PLoS One 2020 22;15(4):e0231099. Epub 2020 Apr 22.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotaviruses having G1/3/8 genotypes have been recently reported from major parts of the world (Africa, Asia, Australia, Europe, and the Americas). During rotavirus surveillance in Thailand, three novel intergenogroup reassortant strains possessing the G9P[8] genotype (DBM2017-016, DBM2017-203, and DBM2018-291) were identified in three stool specimens from diarrheic children. In the present study, we determined and analyzed the full genomes of these three strains. On full-genomic analysis, all three strains were found to share a unique genotype constellation comprising both genogroup 1 and 2 genes: G9-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis demonstrated that each of the 11 genes of the three strains was closely related to that of emerging DS-1-like intergenogroup reassortant, human, and/or locally circulating human strains. Thus, the three strains were suggested to be multiple reassortants that had acquired the G9-VP7 genes from co-circulating Wa-like G9P[8] rotaviruses in the genetic background of DS-1-like intergenogroup reassortant (likely equine-like G3P[8]) strains. To our knowledge, this is the first description of emerging DS-1-like intergenogroup reassortant strains having the G9P[8] genotype. Our observations will add to the growing insights into the dynamic evolution of emerging DS-1-like intergenogroup reassortant rotaviruses through reassortment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231099PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176146PMC
July 2020

High prevalence of equine-like G3P[8] rotavirus in children and adults with acute gastroenteritis in Thailand.

J Med Virol 2020 02 19;92(2):174-186. Epub 2019 Sep 19.

Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

Group A rotavirus (RVA) is a major cause of acute gastroenteritis in infants and young children worldwide. This study aims to clarify the distribution of G/P types and genetic characteristics of RVAs circulating in Thailand. Between January 2014 and September 2016, 1867 stool specimens were collected from children and adults with acute gastroenteritis in six provinces in Thailand. RVAs were detected in 514/1867 (27.5%) stool specimens. G1P[8] (44.7%) was the most predominant genotype, followed by G3P[8] (33.7%), G2P[4] (11.5%), G8P[8] (7.0%), and G9P[8] (1.3%). Unusual G3P[9] (0.8%), G3P[10] (0.4%), G4P[6] (0.4%), and G10P[14] (0.2%) were also detected at low frequencies. The predominant genotype, G1P[8] (64.4%), in 2014 decreased to 6.1% in 2016. In contrast, the frequency of G3P[8] markedly increased from 5.5% in 2014 to 65.3% in 2015 and 89.8% in 2016. On polyacrylamide gel electrophoresis, most (135/140; 96.4%) of the G3P[8] strains exhibited a short RNA profile. Successful determination of the nucleotide sequences of the VP7 genes of 98 G3P[8] strains with a short RNA profile showed that they are all equine-like G3P[8] strains. On phylogenetic analysis of genome segments of two representative Thai equine-like G3P[8] strains, it was noteworthy that they possessed distinct NSP4 genes, one bovine-like and the other human-like. Thus, we found that characteristic equine-like G3P[8] strains with a short RNA electropherotype are becoming highly prevalent in children and adults in Thailand.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.25591DOI Listing
February 2020

Characterization of an Unusual DS-1-Like G8P[8] Rotavirus Strain from Japan in 2017: Evolution of Emerging DS-1-Like G8P[8] Strains through Reassortment.

Jpn J Infect Dis 2019 Jul 28;72(4):256-260. Epub 2019 Feb 28.

Department of Virology and Parasitology, Fujita Health University School of Medicine.

The emergence of unusual DS-1-like intergenogroup reassortant rotaviruses with a bovine-like G8 genotype (DS-1-like G8P[8] strains) has been reported in several Asian countries. During the rotavirus surveillance program in Japan in 2017, a DS-1-like G8P[8] strain (RVA/Human-wt/JPN/SO1162/2017/G8P[8]) was identified in 43 rotavirus-positive stool samples. Strain SO1162 was shown to have a unique genotype constellation, including genes from both genogroup 1 and 2: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP1 gene of strain SO1162 appeared to have originated from DS-1-like G1P[8] strains from Thailand and Vietnam, while the remaining 10 genes were closely related to those of previously reported DS-1-like G8P[8] strains. Thus, SO1162 was suggested to be a reassortant strain that acquired the VP1 gene from Southeast Asian DS-1-like G1P[8] strains on the genetic background of co-circulating DS-1-like G8P[8] strains. Our findings provide important insights into the evolutionary dynamics of emerging DS-1-like G8P[8] strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7883/yoken.JJID.2018.484DOI Listing
July 2019

Characterization of a G10P[14] rotavirus strain from a diarrheic child in Thailand: Evidence for bovine-to-human zoonotic transmission.

Infect Genet Evol 2018 09 15;63:43-57. Epub 2018 May 15.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.

An unusual rotavirus strain, DB2015-066 with the G10P[14] genotype (RVA/Human-wt/THA/DB2015-066/2015/G10P[14]), was detected in a stool sample from a child hospitalized with acute gastroenteritis in Thailand. Here, we sequenced and characterized the full-genome of the strain DB2015-066. On whole genomic analysis, strain DB2015-066 was shown to have a unique genotype constellation: G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The backbone genes of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3) are commonly found in rotavirus strains from artiodactyls such as cattle. Furthermore, phylogenetic analysis indicated that each of the 11 genes of strain DB2015-066 could be of artiodactyl (likely bovine) origin. Thus, strain DB2015-066 appeared to be derived from through zoonotic transmission of a bovine rotavirus strain. Of note, the VP7 gene of strain DB2015-066 was located in G10 lineage-6 together with ones of bovine and bovine-like rotavirus strains, away from the clusters comprising other G10P[14] strains in G10 lineage-2/4/5/9, suggesting the occurrence of independent bovine-to-human interspecies transmission events. Our observations provide important insights into the origins of rare G10P[14] strains, and into dynamic interactions between artiodactyl and human rotavirus strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2018.05.009DOI Listing
September 2018

The dynamics of norovirus genotypes and genetic analysis of a novel recombinant GII.P12-GII.3 among infants and children in Bangkok, Thailand between 2014 and 2016.

Infect Genet Evol 2018 06 20;60:133-139. Epub 2018 Feb 20.

Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand; Research Institute of Microbial Diseases, Osaka University, Suita, Osaka 565-0781, Japan; Osaka Institute of Public Health, Osaka 537-0025, Japan. Electronic address:

Norovirus (NoV) is the leading cause of viral acute gastroenteritis among all age groups in the world. We performed a molecular epidemiological study of the NoVs prevalent in Bangkok between November 2014 and July 2016 to investigate the emergence of new NoV variants in Thailand. A total of 332 stool specimens were collected from hospitalized pediatric patients with acute gastroenteritis in Bangkok, Thailand. NoVs were detected by real-time PCR. The genome of the N-terminal/shell domain was amplified, the nucleotide sequence was determined, and phylogenetic analyses were performed. GII NoV was detected in 58 (17.5%) of the 332 specimens. GII.17, a genotype strain prevalent from 2014 to mid-2015, was hardly detected and replaced by the GII.3 genotype strain. Entire genome sequencing followed by phylogenetic analysis of the GII.3 genotype strains indicated that they are new recombinant viruses, because the genome encoding ORF1 is derived from a GII.12 genotype strain, whereas that encoding ORF2-3 is from a GII.3 genotype strain. The putative recombination breakpoints with the highest statistical significance were located around the border of 3D and ORF2. The change in the prevalent strain of NoV seems to be linked to the emergence of new forms of recombinant viruses. These findings suggested that the swapping of the structural and non-structural proteins of NoV is a common mechanism by which new epidemic variants are generated in nature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2018.02.028DOI Listing
June 2018

Identification and characterization of a human G9P[23] rotavirus strain from a child with diarrhoea in Thailand: evidence for porcine-to-human interspecies transmission.

J Gen Virol 2017 Apr 6;98(4):532-538. Epub 2017 Apr 6.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.

An unusual rotavirus strain with the G9P[23] genotype (RVA/Human-wt/THA/KKL-117/2014/G9P[23]) was identified in a stool specimen from a 10-month-old child hospitalized with severe diarrhoea. In this study, we sequenced and characterized the complete genome of strain KKL-117. On full-genomic analysis, strain KKL-117 was found to have the following genotype constellation: G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. The non-G/P genotype constellation of this strain (I5-R1-C1-M1-A8-N1-T1-E1-H1) is commonly shared with rotavirus strains from pigs. Furthermore, phylogenetic analysis indicated that each of the 11 genes of strain KKL-117 appeared to be of porcine origin. Our observations provide important insights into the dynamic interactions between human and porcine rotavirus strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.000722DOI Listing
April 2017

Full Genome Characterization of Novel DS-1-Like G8P[8] Rotavirus Strains that Have Emerged in Thailand: Reassortment of Bovine and Human Rotavirus Gene Segments in Emerging DS-1-Like Intergenogroup Reassortant Strains.

PLoS One 2016 1;11(11):e0165826. Epub 2016 Nov 1.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013-2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55) were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains), and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains)). On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5) appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2) and one (NSP4) gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3) appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2) and one (NSP4) were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses. Thus, the 2014 strains were assumed to be multiple reassortment strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, human, and/or locally circulating DS-1-like G2P[4] human rotaviruses. Overall, the great genomic diversity among the DS-1-like intergenogroup reassortant strains seemed to have been generated through additional reassortment events involving animal and human strains. Moreover, all the 11 genes of three of the 2014 strains, NP-130, PCB-656, and SSL-55, were very closely related to those of Vietnamese DS-1-like G8P[8] strains that emerged in 2014-2015, indicating the derivation of these DS-1-like G8P[8] strains from a common ancestor. To our knowledge, this is the first report on full genome-based characterization of DS-1-like G8P[8] strains that have emerged in Thailand. Our observations will add to our growing understanding of the evolutionary patterns of emerging DS-1-like intergenogroup reassortant strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165826PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089778PMC
June 2017

Whole genomic analysis of bovine group A rotavirus strains A5-10 and A5-13 provides evidence for close evolutionary relationship with human rotaviruses.

Vet Microbiol 2016 Nov 13;195:37-57. Epub 2016 Sep 13.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.

Bovine group A rotavirus (RVA) is an important cause of acute diarrhea in calves worldwide. In order to obtain precise information on the origin and evolutionary dynamics of bovine RVA strains, we determined and analyzed the complete nucleotide sequences of the whole genomes of six archival bovine RVA strains; four Thai strains (RVA/Cow-tc/THA/A5-10/1988/G8P[1], RVA/Cow-tc/THA/A5-13/1988/G8P[1], RVA/Cow-tc/THA/61A/1989/G10P[5], and RVA/Cow-tc/THA/A44/1989/G10P[11]), one American strain (RVA/Cow-tc/USA/B223/1983/G10P[11]), and one Japanese strain (RVA/Cow-tc/JPN/KK3/1983/G10P[11]). On whole genomic analysis, the 11 gene segments of strains A5-10, A5-13, 61A, A44, B223, and KK3 were found to be considerably genetically diverse, but to share a conserved non-G/P genotype constellation except for the NSP1 gene (I2-R2-C2-M2-(A3/11/13/14)-N2-T6-E2-H3), which is commonly found in RVA strains from artiodactyls such as cattle. Furthermore, phylogenetic analysis revealed that most genes of the six strains were genetically related to bovine and bovine-like strains. Of note is that the VP1, VP3, and NSP2 genes of strains A5-10 and A5-13 exhibited a closer relationship with the cognate genes of human DS-1-like strains than those of other RVA strains. Furthermore, the VP6 genes of strains A5-10 and A5-13 appeared to be equally related to both human DS-1-like and bovine strains. Thus, strains A5-10 and A5-13 were suggested to be derived from the same evolutionary origin as human DS-1-like strains, and were assumed to be examples of bovine RVA strains that provide direct evidence for a close evolutionary relationship between bovine and human DS-1-like strains. Our findings will provide important insights into the origin of bovine RVA strains, and into evolutionary links between bovine and human RVA strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2016.09.003DOI Listing
November 2016

Predominant prevalence of human rotaviruses with the G1P[8] and G8P[8] genotypes with a short RNA profile in 2013 and 2014 in Sukhothai and Phetchaboon provinces, Thailand.

J Med Virol 2017 04 7;89(4):615-620. Epub 2016 Sep 7.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

Of 2,754 stool specimens collected from children with acute gastroenteritis during 2013-2014 in Sukhothai and Phetchaboon provinces, Thailand, 666 (24.2%) were positive for rotavirus A (RVA) in polyacrylamide gel electrophoresis (PAGE). The G and P types of all RVA-positive specimens were determined by semi-nested RT-PCR. G1P[8] (56.5%) was most prevalent, followed by G2P[4] (22.1%). Unusual G8P[8] human RVAs (HuRVAs) were detected at a high frequency (20.0%). Interestingly, 171 of the 376 G1P[8] HuRVAs and all of the 133 G8P[8] HuRVAs showed a short RNA pattern in PAGE. Thus, it was shown that the properties of HuRVAs have been markedly unusual in recent years in Thailand. J. Med. Virol. 89:615-620, 2017. © 2016 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.24669DOI Listing
April 2017

Monthly Distribution of Norovirus and Sapovirus Causing Viral Gastroenteritis in Thailand.

Jpn J Infect Dis 2017 Jan 18;70(1):84-86. Epub 2016 Mar 18.

Office of Senior Medical Scientist, National Institute of Health.

A total of 1,141 rotavirus-negative stool specimens collected from diarrheic children in 4 distinct regions under sentinel surveillance in Thailand between 2006 and 2008 were examined by reverse-transcription (RT)-PCR for norovirus (NoV) and sapovirus (SaV). Three hundred 3 specimens (26.6%) were positive for NoV, with 34 and 269 belonging to genogroup I (GI) and genogroup II (GII), respectively. Twelve specimens (1.1%) were positive for SaV. Mixed infections were found in 5 specimens: 3 samples indicated the presence of both NoV GI and GII, and 2 samples indicated the presence of both NoV GII and SaV. Analysis of the monthly distribution of NoV and SaV revealed that NoV GII was clustered between September and February, while NoV GI was detected mainly in June and July; SaV was found in May, June, and July. In addition, 3 outbreaks of acute gastroenteritis at 2 junior high schools in Phichit and Bangkok, and at a university in Phitsanulok, Thailand in 2006 were found to have been caused by NoV infection. Sequence analysis of NoVs from sporadic cases and outbreaks showed them to be genotypes GII.4 and GII.6.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7883/yoken.JJID.2015.440DOI Listing
January 2017

Reassortment of Human and Animal Rotavirus Gene Segments in Emerging DS-1-Like G1P[8] Rotavirus Strains.

PLoS One 2016 4;11(2):e0148416. Epub 2016 Feb 4.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148416PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742054PMC
July 2016

Emergence and Characterization of Unusual DS-1-Like G1P[8] Rotavirus Strains in Children with Diarrhea in Thailand.

PLoS One 2015 5;10(11):e0141739. Epub 2015 Nov 5.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

The emergence and rapid spread of unusual DS-1-like G1P[8] rotaviruses in Japan have been recently reported. During rotavirus surveillance in Thailand, three DS-1-like G1P[8] strains (RVA/Human-wt/THA/PCB-180/2013/G1P[8], RVA/Human-wt/THA/SKT-109/2013/G1P[8], and RVA/Human-wt/THA/SSKT-41/2013/G1P[8]) were identified in stool specimens from hospitalized children with severe diarrhea. In this study, we sequenced and characterized the complete genomes of strains PCB-180, SKT-109, and SSKT-41. On whole genomic analysis, all three strains exhibited a unique genotype constellation including both genogroup 1 and 2 genes: G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. This novel genotype constellation is shared with Japanese DS-1-like G1P[8] strains. Phylogenetic analysis revealed that the G/P genes of strains PCB-180, SKT-109, and SSKT-41 appeared to have originated from human Wa-like G1P[8] strains. On the other hand, the non-G/P genes of the three strains were assumed to have originated from human DS-1-like strains. Thus, strains PCB-180, SKT-109, and SSKT-41 appeared to be derived through reassortment event(s) between Wa-like G1P[8] and DS-1-like human rotaviruses. Furthermore, strains PCB-180, SKT-109, and SSKT-41 were found to have the 11-segment genome almost indistinguishable from one another in their nucleotide sequences and phylogenetic lineages, indicating the derivation of the three strains from a common origin. Moreover, all the 11 genes of the three strains were closely related to those of Japanese DS-1-like G1P[8] strains. Therefore, DS-1-like G1P[8] strains that have emerged in Thailand and Japan were assumed to have originated from a recent common ancestor. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like G1P[8] strains that have emerged in an area other than Japan. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] rotaviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141739PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634990PMC
June 2016

Whole Genomic Analysis of an Unusual Human G6P[14] Rotavirus Strain Isolated from a Child with Diarrhea in Thailand: Evidence for Bovine-To-Human Interspecies Transmission and Reassortment Events.

PLoS One 2015 30;10(9):e0139381. Epub 2015 Sep 30.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

An unusual rotavirus strain, SKT-27, with the G6P[14] genotypes (RVA/Human-wt/THA/SKT-27/2012/G6P[14]), was identified in a stool specimen from a hospitalized child aged eight months with severe diarrhea. In this study, we sequenced and characterized the complete genome of strain SKT-27. On whole genomic analysis, strain SKT-27 was found to have a unique genotype constellation: G6-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The non-G/P genotype constellation of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3) is commonly shared with rotavirus strains from artiodactyls such as cattle. Phylogenetic analysis indicated that nine of the 11 genes of strain SKT-27 (VP7, VP4, VP6, VP2-3, NSP1, NSP3-5) appeared to be of artiodactyl (likely bovine) origin, while the remaining VP1 and NSP2 genes were assumed to be of human origin. Thus, strain SKT-27 was found to have a bovine rotavirus genetic backbone, and thus is likely to be of bovine origin. Furthermore, strain SKT-27 appeared to be derived through interspecies transmission and reassortment events involving bovine and human rotavirus strains. Of note is that the VP7 gene of strain SKT-27 was located in G6 lineage-5 together with those of bovine rotavirus strains, away from the clusters comprising other G6P[14] strains in G6 lineages-2/6, suggesting the occurrence of independent bovine-to-human interspecies transmission events. To our knowledge, this is the first report on full genome-based characterization of human G6P[14] strains that have emerged in Southeast Asia. Our observations will provide important insights into the origin of G6P[14] strains, and into dynamic interactions between human and bovine rotavirus strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139381PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589232PMC
June 2016

A long-term survey on the distribution of the human rotavirus G type in Thailand.

J Med Virol 2010 Jan;82(1):157-63

Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand.

The distribution of the G type of human rotavirus was surveyed in Thailand between July 1993 and June 2007. A significant yearly change in the distribution of the G type distribution was found. From 1993-1994 to 1998-1999, the G1 type was the most dominant. In 1999-2000, G9 began to appear at a high frequency. In 2000-2001, 2001-2002, and 2002-2003, G9 was very common. In 2003-2004, G1 became the most prevalent type again, and since then it has been detected at the highest frequency. G12 strains, which were first detected in 1998-1999, were also found in 2004-2005 and 2006-2007. The G4 and G3 types were moderately prevalent in 2001-2002 and 2004-2005, respectively. Nucleotide sequence analysis of the VP7 genes of the G9 and G12 strains which reemerged in Thailand showed that they were each similar to the contemporary strains in other countries.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.21596DOI Listing
January 2010