Publications by authors named "Rafael Ramirez-Carracedo"

11 Publications

  • Page 1 of 1

Ivabradine Induces Cardiac Protection against Myocardial Infarction by Preventing Cyclophilin-A Secretion in Pigs under Coronary Ischemia/Reperfusion.

Int J Mol Sci 2021 Mar 12;22(6). Epub 2021 Mar 12.

Hospital Ramón y Cajal Research Unit (IRYCIS), Cardiology Department, Universidad Francisco de Vitoria, 28223 Madrid, Spain.

In response to cardiac ischemia/reperfusion, proteolysis mediated by extracellular matrix metalloproteinase inducer (EMMPRIN) and its secreted ligand cyclophilin-A (CyPA) significantly contributes to cardiac injury and necrosis. Here, we aimed to investigate if, in addition to the effect on the funny current (I(f)), Ivabradine may also play a role against cardiac necrosis by reducing EMMPRIN/CyPA-mediated cardiac inflammation. In a porcine model of cardiac ischemia/reperfusion (IR), we found that administration of 0.3 mg/kg Ivabradine significantly improved cardiac function and reduced cardiac necrosis by day 7 after IR, detecting a significant increase in cardiac CyPA in the necrotic compared to the risk areas, which was inversely correlated with the levels of circulating CyPA detected in plasma samples from the same subjects. In testing whether Ivabradine may regulate the levels of CyPA, no changes in tissue CyPA were found in healthy pigs treated with 0.3 mg/kg Ivabradine, but interestingly, when analyzing the complex EMMPRIN/CyPA, rather high glycosylated EMMPRIN, which is required for EMMPRIN-mediated matrix metalloproteinase (MMP) activation and increased CyPA bonding to low-glycosylated forms of EMMPRIN were detected by day 7 after IR in pigs treated with Ivabradine. To study the mechanism by which Ivabradine may prevent secretion of CyPA, we first found that Ivabradine was time-dependent in inhibiting co-localization of CyPA with the granule exocytosis marker vesicle-associated membrane protein 1 (VAMP1). However, Ivabradine had no effect on mRNA expression nor in the proteasome and lysosome degradation of CyPA. In conclusion, our results point toward CyPA, its ligand EMMPRIN, and the complex CyPA/EMMPRIN as important targets of Ivabradine in cardiac protection against IR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22062902DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001911PMC
March 2021

Ivabradine induces cardiac protection by preventing cardiogenic shock-induced extracellular matrix degradation.

Rev Esp Cardiol (Engl Ed) 2020 Oct 29. Epub 2020 Oct 29.

Unidad de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain. Electronic address:

Introduction And Objectives: Ivabradine reduces heart rate by blocking the I(f) current and preserves blood pressure and stroke volume through unknown mechanisms. Caveolin-3 protects the heart by forming protein complexes with several proteins, including extracellular matrix (ECM)-metalloproteinase-inducer (EMMPRIN) and hyperpolarization-activated cyclic nucleotide-gated channel 4 (HN4), a target of ivabradine. We hypothesized that ivabradine might also exert cardioprotective effects through inhibition of ECM degradation.

Methods: In a porcine model of cardiogenic shock, we studied the effects of ivabradine on heart integrity, the levels of MMP-9 and EMMPRIN, and the stability of caveolin-3/HCN4 protein complexes with EMMPRIN.

Results: Administration of 0.3 mg/kg ivabradine significantly reduced cardiogenic shock-induced ventricular necrosis and expression of MMP-9 without affecting EMMPRIN mRNA, protein, or protein glycosylation (required for MMP activation). However, ivabradine increased the levels of the caveolin-3/LG-EMMPRIN (low-glycosylated EMMPRIN) and caveolin-3/HCN4 protein complexes and decreased that of a new complex between HCN4 and high-glycosylated EMMPRIN formed in response to cardiogenic shock. We next tested whether caveolin-3 can bind to HCN4 and EMMPRIN and found that the HCN4/EMMPRIN complex was preserved when we silenced caveolin-3 expression, indicating a direct interaction between these 2 proteins. Similarly, EMMPRIN-silenced cells showed a significant reduction in the binding of caveolin-3/HCN4, which regulates the I(f) current, suggesting that, rather than a direct interaction, both proteins bind to EMMPRIN.

Conclusions: In addition to inhibition of the I(f) current, ivabradine may induce cardiac protection by inhibiting ECM degradation through preservation of the caveolin-3/LG-EMMPRIN complex and control heart rate by stabilizing the caveolin-3/HCN4 complex.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rec.2020.09.012DOI Listing
October 2020

Cardiac microvasculature and adverse remodeling after acute myocardial infarction. New evidence on the use of VEGF as a therapeutic target.

Rev Esp Cardiol (Engl Ed) 2021 02 17;74(2):124-125. Epub 2020 Oct 17.

Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain; Unidad de Investigación Cardiovascular, Universidad Francisco de Vitoria/Servicio de Cardiología, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rec.2020.07.019DOI Listing
February 2021

Ivabradine-Stimulated Microvesicle Release Induces Cardiac Protection against Acute Myocardial Infarction.

Int J Mol Sci 2020 Sep 8;21(18). Epub 2020 Sep 8.

Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain.

Ivabradine can reduce heart rate through inhibition of the current I() by still unexplored mechanisms. In a porcine model of ischemia reperfusion (IR), we found that treatment with 0.3 mg/kg Ivabradine increased plasma release of microvesicles (MVs) over Placebo, as detected by flow cytometry of plasma isolated from pigs 7 days after IR, in which a tenfold increase of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) containing (both high and low-glycosylated) MVs, was detected in response to Ivabradine. The source of MVs was investigated, finding a 37% decrease of CD31+ endothelial cell derived MVs, while CD41+ platelet MVs remained unchanged. By contrast, Ivabradine induced the release of HCN4+ (mostly cardiac) MVs. While no differences respect to EMMPRIN as a cargo component were found in endothelial and platelet derived MVs, Ivabradine induced a significant release of EMMPRIN+/HCN4+ MVs by day 7 after IR. To test the role of EMMPRIN+ cardiac MVs (EMCMV), H9c2 cell monolayers were incubated for 24 h with 10 EMCMVs, reducing apoptosis, and increasing 2 times cell proliferation and 1.5 times cell migration. The in vivo contribution of Ivabradine-induced plasma MVs was also tested, in which 10 MVs isolated from the plasma of pigs treated with Ivabradine or Placebo 7 days after IR, were injected in pigs under IR, finding a significant cardiac protection by increasing left ventricle ejection fraction and a significant reduction of the necrotic area. In conclusion ivabradine induces cardiac protection by increasing at least the release of EMMPRIN containing cardiac microvesicles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21186566DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555962PMC
September 2020

Targeting TLR4 with ApTOLL Improves Heart Function in Response to Coronary Ischemia Reperfusion in Pigs Undergoing Acute Myocardial Infarction.

Biomolecules 2020 08 9;10(8). Epub 2020 Aug 9.

Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), CIBERCV, 28223 Madrid, Spain.

Toll-like receptor 4 (TLR4) contributes to the pathogenesis of coronary ischemia/reperfusion (IR). To test whether the new TLR4 antagonist, ApTOLL, may prevent coronary IR damage, we administered 0.078 mg/kg ApTOLL or Placebo in pigs subjected to IR, analyzing the levels of cardiac troponins, matrix metalloproteinases, pro-, and anti-inflammatory cytokines, heart function, and tissue integrity over a period of 7 days after IR. Our results show that ApTOLL reduced cardiac troponin-1 24 h after administration, improving heart function, as detected by a significant recovery of the left ventricle ejection fraction (LVEF) and the shortening fraction (FS) cardiac parameters. The extension of necrotic and fibrotic areas was also reduced, as detected by Evans blue/2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxylin/Eosine, and Masson Trichrome staining of heart sections, together with a significant reduction in the expression of the extracellular matrix-degrading, matrix metalloproteinase 9. Finally, the expression of the following cytokines, CCL1, CCL2, MIP1-A-B, CCL5, CD40L, C5/C5A, CXCL1, CXCL10, CXCL11, CXCL12, G-CSF, GM-CSF, ICAM-1, INF-g, IL1-a, ILI-b, IL-1Ra, IL2, IL4, IL5, IL6, IL8, IL10, IL12, IL13, IL16, IL17-A, IL17- E, IL18, IL21, IL27, IL32, MIF, SERPIN-E1, TNF-a, and TREM-1, were also assayed, detecting a pronounced decrease of pro-inflammatory cytokines after 7 days of treatment with ApTOLL. Altogether, our results show that ApTOLL is a promising new tool for the treatment of acute myocardial infarction (AMI).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom10081167DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464507PMC
August 2020

Differential expression of circulating miRNAs as a novel tool to assess BAG3-associated familial dilated cardiomyopathy.

Biosci Rep 2019 03 15;39(3). Epub 2019 Mar 15.

Univ Puerta del Mar, School of Medicine, Cadiz, Spain

A new familial dilated cardiomyopathy (FDCM) was found related to mutations in gene. MicroRNAs (miRNAs) represent new targets of FDCM, although no studies have assessed clinical association between Bcl2-associated athanogene 3 (BAG3)-related DCM and miRNAs. Here, we studied whether a clinical association between BAG3-related FDCM and circulating miRNAs may have diagnostic and prognostic value in a small cohort of familial related individuals carrying a BAG3 mutation (BAG3+) and/or diagnosed of dilated cardiomyopathy (DCM) (DCM+). The analysis of 1759 circulating miRNAs showed significant differences between BAG3+ and BAG3- individuals for miRNAs mir-3191-3p, 6769b-3p, 1249-ep, 154-5p, 6855-5p, and 182-5p, while comparisons between BAG3+/DCM+ versus BAG3+/DCM- were restricted to miRNAs mir-154-5p, 6885-5p, and 182-5p, showing significant correlation with systolic and diastolic blood pressure, A wave, left atrium length, and left atrium area. Additionally, when stratified by gender and age, miRNAs were statistically correlated with critical parameters, including left ventricle ejection fraction (LVEF) and ventricular diameter, in women and young men. Likewise, 56% of BAG3+/DCM+, significantly co-expressed mir-154-5p and mir-182-5p, and a slight 4% did not express such combination, suggesting that co-expression of mir-154-5p and mir-182-5p may potentially show diagnostic value. Further studies will require long-term follow-up, and validation in larger populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BSR20180934DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418398PMC
March 2019

Non-Invasive Detection of Extracellular Matrix Metalloproteinase Inducer EMMPRIN, a New Therapeutic Target against Atherosclerosis, Inhibited by Endothelial Nitric Oxide.

Int J Mol Sci 2018 Oct 19;19(10). Epub 2018 Oct 19.

Cardiology Department, University Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), CIBERCV, 28223 Madrid, Spain.

Lack of endothelial nitric oxide causes endothelial dysfunction and circulating monocyte infiltration, contributing to systemic atheroma plaque formation in arterial territories. Among the different inflammatory products, macrophage-derived foam cells and smooth muscle cells synthesize matrix metalloproteinases (MMPs), playing a pivotal role in early plaque formation and enlargement. We found increased levels of MMP-9 and MMP-13 in human endarterectomies with advanced atherosclerosis, together with significant amounts of extracellular matrix (ECM) metalloproteinase inducer EMMPRIN. To test whether the absence of NO may aggravate atherosclerosis through EMMPRIN activation, double NOS3/apoE knockout (KO) mice expressed high levels of EMMPRIN in carotid plaques, suggesting that targeting extracellular matrix degradation may represent a new mechanism by which endothelial NO prevents atherosclerosis. Based on our previous experience, by using gadolinium-enriched paramagnetic fluorescence micellar nanoparticles conjugated with AP9 (NAP9), an EMMPRIN-specific binding peptide, magnetic resonance sequences allowed non-invasive visualization of carotid EMMPRIN in NOS3/apoE over apoE control mice, in which atheroma plaques were significantly reduced. Taken together, these results point to EMMPRIN as a new therapeutic target of NO-mediated protection against atherosclerosis, and NAP9 as a non-invasive molecular tool to target atherosclerosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms19103248DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214015PMC
October 2018

Ivabradine in acute heart failure: Effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial.

Cardiol J 2020 29;27(1):62-71. Epub 2018 Aug 29.

Cardiology Department, Ramón y Cajal University Hospital (IRYCIS), University of Alcalá de Henares, Madrid, Spain.

Background: Acute heart failure patients could benefit from heart rate reduction, as myocardial consumption and oxidative stress are related to tachycardia. Ivabradine could have a clinical role attenuating catecholamine-induced tachycardia. The aim of this study was to evaluate hemodynamic effects of ivabradine in a swine model of acute heart failure.

Methods: Myocardial infarction was induced by 45 min left anterior descending artery balloon occlusion in 18 anesthetized pigs. An infusion of dobutamine and noradrenaline was maintained aiming to preserve adequate hemodynamic support, accompanied by fluid administration to obtain a pulmonary wedged pressure ≥ 18 mmHg. After reperfusion, rhythm and hemodynamic stabilization, the animals were randomized to 0.3 mg/kg ivabradine intravenously (n = 9) or placebo (n = 9). Hemodynamic parameters were observed over a 60 min period.

Results: Ivabradine was associated with a significant reduction in heart rate (88.4 ± 12.0 bpm vs. 122.7 ± 17.3 bpm after 15 min of ivabradine/placebo infusion, p < 0.01) and an increase in stroke volume (68.8 ± 13.7 mL vs. 52.4 ± 11.5 mL after 15 min, p = 0.01). There were no significant differences in systemic or pulmonary arterial pressure, or significant changes in pulmonary capillary pressure. However, after 15 min, cardiac output was significantly reduced with ivabradine (-5.2% vs. +15.0% variation in ivabradine/placebo group, p = 0.03), and central venous pressure increased (+4.2% vs. -19.7% variation, p < 0.01).

Conclusions: Ivabradine reduces heart rate and increases stroke volume without modifying systemic or left filling pressures in a swine model of acute heart failure. However, an excessive heart rate reduction could lead to a decrease in cardiac output and an increase in right filling pressures. Future studies with specific heart rate targets are needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5603/CJ.a2018.0078DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086495PMC
June 2021

Endothelial Extracellular Vesicles Produced by Senescent Cells: Pathophysiological Role in the Cardiovascular Disease Associated with all Types of Diabetes Mellitus.

Curr Vasc Pharmacol 2019 ;17(5):447-454

Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain.

Endothelial senescence-associated with aging or induced prematurely in pathological situations, such as diabetes, is a first step in the development of Cardiovascular Disease (CVDs) and particularly inflammatory cardiovascular diseases. The main mechanism that links endothelial senescence and the progression of CVDs is the production of altered Extracellular Vesicles (EVs) by senescent endothelial cells among them, Microvesicles (MVs). MVs are recognized as intercellular signaling elements that play a key role in regulating tissue homeostasis. However, MVs produced by damage cell conveyed epigenetic signals, mainly involving microRNAs, which induce many of the injured responses in other vascular cells leading to the development of CVDs. Many studies strongly support that the quantification and characterization of the MVs released by senescent endothelial cells may be useful diagnostic tools in patients with CVDs, as well as a future therapeutic target for these diseases. In this review, we summarize the current knowledge linking senescence-associated MVs to the development of CVDs and discuss the roles of these MVs, in particular, in diabetic-associated increases the risk of CVDs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570161116666180820115726DOI Listing
May 2020

Senescent Microvesicles: A Novel Advance in Molecular Mechanisms of Atherosclerotic Calcification.

Int J Mol Sci 2018 Jul 9;19(7). Epub 2018 Jul 9.

Biology Systems Department, Physiology, Alcala University, Alcala de Henares, 28805 Madrid, Spain.

Atherosclerosis, a chronic inflammatory disease that causes the most heart attacks and strokes in humans, is the leading cause of death in the developing world; its principal clinical manifestation is coronary artery disease. The development of atherosclerosis is attributed to the aging process itself (biological aging) and is also associated with the development of chronic diseases (premature aging). Both aging processes produce an increase in risk factors such as oxidative stress, endothelial dysfunction and proinflammatory cytokines (oxi-inflamm-aging) that might generate endothelial senescence associated with damage in the vascular system. Cellular senescence increases microvesicle release as carriers of molecular information, which contributes to the development and calcification of atherosclerotic plaque, as a final step in advanced atherosclerotic plaque formation. Consequently, this review aims to summarize the information gleaned to date from studies investigating how the senescent extracellular vesicles, by delivering biological signalling, contribute to atherosclerotic calcification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms19072003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073566PMC
July 2018

Protein Carbamylation: A Marker Reflecting Increased Age-Related Cell Oxidation.

Int J Mol Sci 2018 May 17;19(5). Epub 2018 May 17.

Biology Systems Department, Physiology, Alcala University, Alcala de Henares, 28805 Madrid, Spain.

Carbamylation is a post-translational modification of proteins that may partake in the oxidative stress-associated cell damage, and its increment has been recently proposed as a "hallmark of aging". The molecular mechanisms associated with aging are related to an increased release of free radicals. We have studied whether carbamylated proteins from the peripheral blood of healthy subjects are related to oxidative damage and aging, taking into account the gender and the immune profile of the subjects. The study was performed in healthy human volunteers. The detection of protein carbamylation and malondialdehyde (MDA) levels was evaluated using commercial kits. The immune profile was calculated using parameters of immune cell function. The results show that the individuals from the elderly group (60⁻79 years old) have increased carbamylated protein and MDA levels. When considered by gender, only men between 60 and 79 years old showed significantly increased carbamylated proteins and MDA levels. When those subjects were classified by their immune profile, the carbamylated protein levels were higher in those with an older immune profile. In conclusion, the carbamylation of proteins in peripheral blood is related to age-associated oxidative damage and to an aging functional immunological signature. Our results suggest that carbamylated proteins may play an important role at the cellular level in the aging process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms19051495DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983744PMC
May 2018