Publications by authors named "Racel Ireneo Luis C Querol"

3 Publications

  • Page 1 of 1

Identification of expression patterns associated with hemorrhage and resuscitation: integrated approach to data analysis.

J Trauma 2006 Apr;60(4):701-23; discussion 723-4

Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

Background: Although transcriptional profiling is a well-established technique, its application to systematic studying of various biological phenomena is still limited because of problems with high-volume data analysis and interpretation. This research project's objective was to create a comprehensive summary of changes in gene expression after hemorrhagic shock (HS), reliant and impartial of multiple variables, such as resuscitation treatments, organ analyzed, and time after impact.

Methods: Rat model of severe (40% total blood loss) HS was employed. Hemorrhagic shock was treated with 6 different resuscitation strategies: (1) racemic lactated Ringer's (DL-LR); (2) L-lactated Ringer's (L-LR); (3) ketone Ringer's (KR); (4) pyruvate Ringer's (PR); (5) 6% hetastarch (Hex); (6) 7.5% hypertonic saline (HTS). Nonresuscitated and nonhemorrhaged rats served as controls. Ketone and pyruvate Ringer solutions were identical to the lactated Ringer's solution except for equimolar substitution of lactate with beta-hydroxybutyrate and sodium pyruvate, respectively. Total RNA from liver, lung, and spleen was isolated immediately (0 hour) and 24 hour postresuscitation. Each organ, time point and treatment was profiled using individual cDNA array (1,200 genes), to produce 183 separate data files. Methods of analysis included one-way and unbalanced factorial ANOVA, Sokal-Michener average linkage clustering and contextual mapping.

Results: : Unresuscitated HS produced the highest number (56) of upregulated expressions in spleen and lungs. HEX and HTS affected mostly pulmonary genes (22 and 9). Fourteen genes changed in response to combination of all three factors: treatment, organ, and time. Eighteen genes were identified as treatment-specific. Fifteen genes adjusted expression 24 hour post-treatment. The largest number of genes with altered expression (168) responded differently in all three organs. In this study 15 gene clusters were pinpointed. Contextual mapping identified novel and confirmed known pathways contributing to hemorrhage/resuscitation.

Conclusions: We have reliably identified genes and pathways that are affected by HS and are responsive to resuscitation. Gene expression in various organs is affected differentially by HS, which can be further modulated by the choice of resuscitation strategy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ta.0000203699.91475.f6DOI Listing
April 2006

The rate of induction of hypothermic arrest determines the outcome in a Swine model of lethal hemorrhage.

J Trauma 2004 Nov;57(5):961-9

Trauma Research and Readiness Institute for Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.

Background: Lethal injuries can be surgically repaired under asanguineous hypothermic condition (suspended animation) with excellent outcome. However, the optimal rate for the induction of hypothermic metabolic arrest following uncontrolled lethal hemorrhage (ULH) is unknown.

Methods: ULH was induced in 32 female swine (80-120 lbs) by creating an iliac artery and vein injury, followed 30 minutes later by laceration of the descending thoracic aorta. Through a left thoracotomy approach, total body hypothermic hyperkalemic metabolic arrest was induced by infusing organ preservation fluids into the aorta. Experimental groups were: normothermic controls (no cooling, NC), or hypothermia induced at a rate of 0.5 degrees C/min (slow, SC), 1 degrees C/min (medium, MC), or 2 degrees C/min (fast, FC). Vascular injuries were repaired during the 60 minutes of profound (10 degrees C) hypothermic arrest. Hyperkalemia was reversed by hypokalemic fluid exchange, and blood was infused for resuscitation during the re-warming (0.5 degrees C/ minute) period. The survivors were monitored for 6 weeks.

Results: The 6 week survival rates were 0% (NC), 37.5% (SC), 62.5% (MC), and 87.5% (FC) respectively (p < 0.05 MC&FC versus NC). All of the surviving hypothermic arrest animals were neurologically intact and displayed no long term organ dysfunction.

Conclusion: Hypothermic metabolic arrest can be used to maintain viability of key organs during repair of lethal injuries. Survival is influenced by the rate of cooling with the best outcome following rapid induction of hypothermia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ta.0000149549.72389.3fDOI Listing
November 2004

Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in Swine.

J Trauma 2004 May;56(5):974-83

Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.

Background: Techniques for better hemorrhage control after injury could change outcome. We have previously shown that a zeolite mineral hemostatic agent (ZH) can control aggressive bleeding through adsorption of water, which is an exothermic process. Increasing the residual moisture content (RM) of ZH can theoretically decrease heat generation, but its effect on the hemostatic properties is unknown. We tested ZH with increasing RM against controls and other hemostatic agents in a swine model of battlefield injury.

Methods: A complex groin injury was created in 72 swine (37 +/- 0.8 kg). This included semitransection of the proximal thigh and complete division of the femoral artery and vein. After 3 minutes, the animals were randomized to 1 of 10 groups: group 1, no dressing (ND); group 2, standard dressing (SD); group 3, SD + 3.5 oz ZH with 1% RM (1% ZH); group 4, SD + 3.5 oz ZH with 4% RM (4% ZH); group 5, SD + 2 oz ZH with 1% RM (1% ZH 2oz); group 6, SD + 3.5 oz ZH with 8% RM (8% ZH); group 7, SD + chitosan-based hemostat, HemCon (HC); group 8, SD + 3.5 oz nonzeolite mineral hemostat, Quick Relief (NZH); group 9, SD + bovine clotting factors-based hemostat, Fast Act (FA); and group 10, SD + 30 g of starch-based hemostat, TraumaDex (TDex). Resuscitation (500 mL of Hespan over 30 minutes) was started 15 minutes after injury and hemodynamic monitoring was performed for 180 minutes. Primary endpoints were survival for 180 minutes and blood loss. In addition, maximum wound temperatures were recorded, and histologic damage to artery, vein, nerve, and muscle was documented.

Results: Use of 1% ZH decreased blood loss and reduced mortality to 0% (p < 0.05). Increasing the RM adversely affected efficacy without any significant decrease in wound temperatures. Minimal histologic tissue damage was seen with ZH independent of the percentage of RM.

Conclusion: The use of zeolite hemostatic agent (1% residual moisture, 3.5 oz) can control hemorrhage and dramatically reduce mortality from a lethal groin wound.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ta.0000127763.90890.31DOI Listing
May 2004