Publications by authors named "Rabab H Sayed"

17 Publications

  • Page 1 of 1

Eprosartan: A closer insight into its neuroprotective activity in rats with focal cerebral ischemia-reperfusion injury.

J Biochem Mol Toxicol 2021 May 3:e22796. Epub 2021 May 3.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.

Eprosartan (EPRO), an angiotensin receptor type-1 (AT-1) blocker, exhibited neuroprotective activities in ischemic stroke resulting from focal cerebral ischemia in rats. The current study aimed to clarify the neuroprotective role of EPRO in middle carotid artery occlusion (MCAO)-induced ischemic stroke in rats. Fifty-six male Wistar rats were divided into four groups (n = 14 per group): sham-operated group, sham receiving EPRO (60 mg/kg/day, po) group, ischemia-reperfusion (IR) group, and IR receiving EPRO (60 mg/kg/day, po) group. MCAO led to a remarkable impairment in motor function together with stimulation of inflammatory and apoptotic pathways in the hippocampus of rats. After MCAO, the AT1 receptor in the brain was stimulated, resulting in activation of Janus kinase 2/signal transducers and activators of transcription 3 signaling generating more neuroinflammatory milieu and destructive actions on the hippocampus. Augmentation of caspase-3 level by MCAO enhanced neuronal apoptosis synchronized with neurodegenerative effects of oxidative stress biomarkers. Pretreatment with EPRO opposed motor impairment and decreased oxidative and apoptotic mediators in the hippocampus of rats. The anti-inflammatory activity of EPRO was revealed by downregulation of nuclear factor-kappa B and tumor necrosis factor-β levels and (C-X-C motif) ligand 1 messenger RNA (mRNA) expression. Moreover, the study confirmed the role of EPRO against a unique pathway of hypoxia-inducible factor-1α and its subsequent inflammatory mediators. Furthermore, upregulation of caveolin-1 mRNA level was also observed along with decreased oxidative stress marker levels and brain edema. Therefore, EPRO showed neuroprotective effects in MCAO-induced cerebral ischemia in rats via attenuation of oxidative, apoptotic, and inflammatory pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.22796DOI Listing
May 2021

Triblock Copolymer Bioinks in Hydrogel 3D Printing for Regenerative Medicine - a Focus on PF127.

Tissue Eng Part B Rev 2021 Apr 5. Epub 2021 Apr 5.

Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;

Three-dimensional (3D) bioprinting is a novel technique applied to manufacture semi-solid or solid objects via deposition of successive thin layers. The widespread implementation of the 3D bioprinting technology encouraged scientists to evaluate its feasibility for applications in human regenerative medicine. 3D bioprinting gained much interest as a new strategy in order to prepare implantable 3D tissues or organs, tissue and organ evaluation models to test drugs, and cell/material interaction systems. The present work summarizes recent and relevant progress based on the use of hydrogels for the technology of 3D bioprinting and their emerging biomedical applications. An overview of different 3D printing techniques in addition to the nature and properties of bioinks used will be described with a focus on hydrogels as suitable bioinks for 3D printing. A comprehensive overview of triblock copolymers with emphasis on Pluronic F127 as a bioink in 3D printing for regenerative medicine will be provided. Several biomedical applications of Pluronic F127 in tissue engineering, particularly in bone and cartilage regeneration and in vascular reconstruction will be also discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEB.2021.0026DOI Listing
April 2021

17β-Estradiol augments the neuroprotective effect of agomelatine in depressive- and anxiety-like behaviors in ovariectomized rats.

Psychopharmacology (Berl) 2020 Sep 13;237(9):2873-2886. Epub 2020 Jun 13.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.

Rationale And Objective: Estradiol decline has been associated with depression and anxiety in post-menopausal women. Agomelatine (Ago) is an agonist of the melatonergic MT1/MT2 receptors and an antagonist of the serotonergic 5-HT2c receptors. The present study aimed to evaluate the effects of combining Ago with 17β-estradiol (E2) on ovariectomy (OVX)-induced depressive- and anxiety-like behaviors in young adult female rats.

Methods: OVX rats were treated with Ago (40 mg/kg/day, p.o.) for 10 days starting 1 week after surgery alone or combined with two doses of E2 (40 μg/kg/day, s.c.) given before behavioral testing.

Results: Co-administration of E2 enhanced the anti-depressant and anxiolytics effects of Ago as evidenced by decreased immobility time in the forced swimming test, as well as increased time spent in the open arms and number of entries to open arms in the elevated plus-maze. In parallel, Ago increased hippocampal norepinephrine, dopamine, melatonin, and brain-derived neurotrophic factor (BDNF). Meanwhile, Ago-treated rats exhibited reduced hippocampal nuclear factor kappa beta (NF-kB) P65 expression and pro-inflammatory cytokine level. Ago upregulated estrogen receptor (ER α and β) mRNA expression in the hippocampus of OVX rats and elevated serum estradiol levels. Co-administration of E2 with Ago synergistically decreased NF-kB P65 expression and pro-inflammatory cytokines, and increased BDNF levels.

Conclusion: E2 augmented the neuroprotective effect of Ago in OVX rats via its anti-inflammatory and neurotrophic effects. The combined treatment of E2 and Ago should be further investigated as a treatment of choice for depression, anxiety, and sleep disturbances associated with menopause.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-020-05580-2DOI Listing
September 2020

Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a streptozotocin-induced rat model of sporadic Alzheimer's disease: The role of JAK2/STAT3 and Nrf2/HO-1 signalling pathway modulation.

Phytother Res 2020 Sep 6;34(9):2351-2365. Epub 2020 Apr 6.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

The aim of the present study was to assess the neuroprotective effects of xanthotoxin and umbelliferone in streptozotocin (STZ)-induced cognitive dysfunction in rats. Animals were injected intracerebroventricularly (ICV) with STZ (3 mg/kg) once to induce a sporadic Alzheimer's disease (SAD)-like condition. Xanthotoxin or umbelliferone (15 mg/kg, i.p.) were administered 5 hr after ICV-STZ and daily for 20 consecutive days. Xanthotoxin or umbelliferone prevented cognitive deficits in the Morris water maze and object recognition tests. In parallel, xanthotoxin or umbelliferone reduced hippocampal acetylcholinestrase activity and malondialdehyde level. Moreover, xanthotoxin or umbelliferone increased glutathione content. These coumarins also modulated neuronal cell death by reducing the level of proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-6), inhibiting the overexpression of inflammatory markers (nuclear factor κB [NF-κB] and cyclooxygenase II), and upregulating the expression of NF-κB inhibitor (IκB-α). Interestingly, xanthotoxin diminished phosphorylated JAK2 and phosphorylated STAT3 protein expression, while umbelliferone markedly replenished nuclear factor erythroid-derived 2-like 2 (Nrf2) and haem oxygenase-1 (HO-1) levels. The current study provides evidence for the protective effect of xanthotoxin and umbelliferone in STZ-induced cognitive dysfunction in rats. This effect may be attributed, at least in part, to inhibiting acetylcholinestrase and attenuating oxidative stress, neuroinflammation and neuronal loss.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.6686DOI Listing
September 2020

Aberrations of miR-126-3p, miR-181a and sirtuin1 network mediate Di-(2-ethylhexyl) phthalate-induced testicular damage in rats: The protective role of hesperidin.

Toxicology 2020 03 9;433-434:152406. Epub 2020 Feb 9.

Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt. Electronic address:

Recently, oxidative stress was implicated in the environmental contaminant Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity, however the mechanism is unclear. We investigated the role of oxidative stress-responsive microRNAs in DEHP-induced aberrations and the protective effect of the citrus flavonoid, hesperidin (HSP). Male Wistar rats were randomly allocated into four groups as vehicle-treated control, DEHP-alone group (500 mg/kg/day) for 30 days, and HSP (25 or 50 mg/kg) for 60 days; testicular damage was triggered by oral administration of DEHP (500 mg/kg/day) after thirty days of oral administration of HSP (25 or 50 mg/kg). DEHP administration reduced testis weight coefficient, serum testosterone, testicular 3β-hydroxysteroid dehydrogenase and antioxidant enzyme activities, and elevated serum fatty acid-binding protein-9, testicular malondialdehyde, and Bax/Bcl2 ratio. Aberrant testicular miR-126-3p and miR-181a expression was observed, along with decreased expression of sirtuin1 (SIRT1) and its targets; nuclear factor-erythroid 2-related factor2, haeme oxygenase-1, and superoxide dismutase2. HSP administration significantly ameliorated these changes and restored testicular function in a dose-dependent manner. We highlight a novel role of oxidative stress-miR-126/miR-181a-SIRT1 network in mediating DEHP-induced changes which were reversed by the antioxidant HSP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2020.152406DOI Listing
March 2020

Combined neurotoxic effects of cannabis and nandrolone decanoate in adolescent male rats.

Neurotoxicology 2020 01 5;76:114-125. Epub 2019 Nov 5.

Department of Research on Children with Special Needs, National Research Centre, Egypt.

Polydrug use among adolescence is a widespread phenomenon and has increased in the last few years. In particular, most nandrolone decanoate (Nan) abusers combine its use with cannabis (Can); thus, studying the consequences of this combination in adolescent subjects is important because potentiation of their effects may increase their neurotoxicity. The present study was designed to study the neurotoxic effects of Nan and Can, alone and in combination, in adolescent male rats by studying the behavioural, biochemical, and histopathological effects. Nan (15 mg/kg, s.c.) and Can (20 mg/kg, s.c.) were given alone or in combination to rats once daily for one month. The combined administration of Can and Nan induced learning and spatial memory deficits, hypo-locomotion, anxiety and aggression in adolescent rats as evidenced by the Morris water maze, open field, elevated plus maze, and defensive aggression tests. In parallel, rats treated with the combination showed severe deleterious effects in the hippocampal and prefrontal cortex (PFC) neural architecture along with a decrease in brain-derived neurotropic factor. Furthermore, combined administration of Can and Nan increased oxidative stress (significantly increased malondialdehyde and nitric oxide levels and reduced glutathione content), elevated brain pro-inflammatory cytokines (tumour necrosis factor alpha and interleukin 1 beta), and upregulated caspase-3, caspase-8, and caspase-9 mRNA expression and cytochrome c levels. In conclusion, abuse of both Can and Nan conferred greater neurotoxic effects than either drug alone that were at least partially attributed to oxidative stress, inflammation, and intrinsic and extrinsic apoptosis in the hippocampus and PFC of rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2019.11.001DOI Listing
January 2020

Lercanidipine boosts the efficacy of mesenchymal stem cell therapy in 3-NP-induced Huntington's disease model rats via modulation of the calcium/calcineurin/NFATc4 and Wnt/β-catenin signalling pathways.

Neurochem Int 2019 12 17;131:104548. Epub 2019 Sep 17.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt. Electronic address:

3-Nitropropionic acid (3-NP) induces a spectrum of Huntington's disease (HD)-like neuropathologies in the rat striatum. The present study aimed to demonstrate the neuroprotective effect of lercanidipine (LER) in rats with 3-NP-induced neurotoxicity, address the possible additional protective effect of combined treatment with bone marrow-derived mesenchymal stem cells (BM-MSCs) and LER, and investigate the possible involvement of the Ca/calcineurin (CaN)/nuclear factor of activated T cells c4 (NFATc4) and Wnt/β-catenin signalling pathways. Rats were injected with 3-NP (10 mg/kg/day, i.p.) for two weeks and were divided into four subgroups; the first served as the control HD group, the second received a daily dose of LER (0.5 mg/kg, i.p.), the third received a single injection of BM-MSCs (1 x 106/rat, i.v.) and the last received a combination of both BM-MSCs and LER. The combined therapy improved motor and behaviour performance. Meanwhile, this treatment led to a marked reduction in striatal cytosolic Ca CaN, tumour necrosis factor-alpha, and NFATc4 expression and the Bax/Bcl2 ratio. Combined therapy also increased striatal brain-derived neurotrophic factor, FOXP3, Wnt, and β-catenin protein expression. Furthermore, haematoxylin-eosin and Nissl staining revealed an amelioration of striatum tissue injury with the combined treatment. In conclusion, the current study provides evidence for a neuroprotective effect of LER and/or BM-MSCs in 3-NP-induced neurotoxicity in rats. Interestingly, combined LER/BM-MSC therapy was superior to cell therapy alone in inhibiting 3-NP-induced neurological insults via modulation of the Ca/CaN/NFATc4 and Wnt/β-catenin signalling pathways. LER/BM-MSC combined therapy may represent a feasible approach for improving the beneficial effects of stem cell therapy in HD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2019.104548DOI Listing
December 2019

Hypoxia-inducible factor 1 alpha and nuclear-related receptor 1 as targets for neuroprotection by albendazole in a rat rotenone model of Parkinson's disease.

Clin Exp Pharmacol Physiol 2019 12 9;46(12):1141-1150. Epub 2019 Sep 9.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear receptor related-1 (Nurr1) play pivotal roles in the development and survival of dopaminergic neurons, and deficiencies in these genes may be involved in Parkinson's disease (PD) pathogenesis. Recently, anthelminthic benzimidazoles were shown to promote HIF-1α transcription in vitro and were proposed to activate Nurr1 via their benzimidazole group. Therefore, the aim of this study was to explore the neuroprotective effects of albendazole (ABZ), an anthelminthic benzimidazole, in a rotenone model of Parkinson's disease (PD). Rotenone (1.5 mg/kg) was subcutaneously injected into rats every other day for a period of 21 days, resulting in the development of the essential features of PD. In addition to rotenone, ABZ (10 mg/kg) was administered orally starting from the 11th day. Treatment of rats with ABZ markedly mitigated rotenone-induced histological alterations in substantia nigra (SN), restored striatal dopamine (DA) level and motor functions and decreased the expression of α-synuclein (a disease marker protein). ABZ also enhanced expression of Hypoxia-inducible factor-1 alpha (HIF-1α) in the SN along with its downstream target, vascular endothelial growth factor, promoting neuronal survival. Similarly, ABZ augmented nuclear receptor related-1 (Nurr1) expression in the SN and increased transcriptional activation of Nurr1-controlled genes, which are essential for regulation of DA synthesis; additionally, expression of neurotoxic proinflammatory cytokines that induce neuronal death was suppressed. In conclusion, the present study suggests that ABZ exerts a neuroprotective effect in a rotenone-induced PD model associated with HIF-1α and Nurr1 activation and thus may be a viable candidate for treating PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.13162DOI Listing
December 2019

Venlafaxine Mitigates Depressive-Like Behavior in Ovariectomized Rats by Activating the EPO/EPOR/JAK2 Signaling Pathway and Increasing the Serum Estradiol Level.

Neurotherapeutics 2019 04;16(2):404-415

Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Reduced estradiol levels are associated with depression in women during the transition to and after menopause. A considerable number of studies focusing on the theme of treating depression through the activation of erythropoietin (EPO)-induced signaling pathways have been published. Venlafaxine is an approved antidepressant drug that inhibits both serotonin and norepinephrine transporters. The aim of the present study was to investigate the effects of venlafaxine on the depressive-like behaviors and serum estradiol levels in female rats following ovariectomy (OVX) and the possible roles of EPO-induced signaling pathways. Venlafaxine (10 mg/kg/day) was orally administered to OVX rats over a period of 4 weeks using two different treatment regimens: either starting 24 h or 2 weeks after OVX. Venlafaxine showed a superior efficacy in inducing antidepressant-like effects after an acute treatment (24 h post-OVX) than after the delayed treatment (2 weeks post-OVX) and was characterized by a decreased immobility time in the forced swimming test. In parallel, venlafaxine induced EPO and EPO receptor mRNA expression and increased levels of phospho-Janus kinase 2 (p-JAK2), phospho-signal transducer and activator of transcription 5, and phospho-extracellular signal-regulated kinase 1/2 in the hippocampus of OVX rats. Meanwhile, rats exhibited a marked reduction in the hippocampal Bax/Bcl2 ratio, caspase-3 activity, and tumor necrosis factor alpha levels after venlafaxine treatment. Venlafaxine also increased the hippocampal brain-derived neurotrophic factor and serum estradiol levels. Based on these findings, venlafaxine exerts a neuroprotective effect on OVX rats that is at least partially attributed to the activation of EPO/EPOR/JAK2 signaling pathways, anti-apoptotic activities, anti-inflammatory activities, and neurotrophic activities, as well as an increase in serum estradiol level. Graphical Abstract ᅟ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13311-018-00680-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554373PMC
April 2019

Neuroprotective effect of linagliptin against cuprizone-induced demyelination and behavioural dysfunction in mice: A pivotal role of AMPK/SIRT1 and JAK2/STAT3/NF-κB signalling pathway modulation.

Toxicol Appl Pharmacol 2018 08 1;352:153-161. Epub 2018 Jun 1.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt. Electronic address:

Multiple sclerosis is a chronic inflammatory demyelinating central nervous system disorder leading to serious neurological deficits. Linagliptin, a dipeptidyl peptidase-4 inhibitor, recently showed neuroprotective properties against neurodegenerative diseases. This study investigated the possible neuroprotective effect of linagliptin against cuprizone-induced demyelination in mice and its potential early-remyelinating properties. C57Bl/6 mice were fed chow containing 0.7% cuprizone for 1 week, followed by 3 weeks of a 0.2% cuprizone diet. Linagliptin (10 mg/kg/day, p.o.) was given for 3 weeks starting from the second week. Linagliptin treatment improved behavioural and motor abnormalities induced by cuprizone, as demonstrated by open field, rotarod and grip strength tests. In parallel, linagliptin lessened the demyelination through enhancing Olig2 gene expression, as shown by increased myelin basic protein, myelin proteolipid protein levels and Luxol fast blue-staining intensity. Linagliptin attenuated cuprizone-induced oxidative stress by decreasing brain thiobarbituric acid reactive substances along with restoring reduced glutathione levels. Linagliptin exerted an anti-inflammatory effect by reducing brain tumor necrosis factor-alpha. Interestingly, linagliptin diminished phosphorylated JAK2, phosphorylated STAT3 and NF-κB p65 protein expression while up-regulating phosphorylated AMP-activated protein kinase (p-AMPK) protein and SIRT1 gene expression levels. In conclusion, linagliptin exerted a neuroprotective effect in mice with cuprizone-induced demyelination possibly by modulating AMPK/SIRT1 and JAK2/STAT3/NF-κB signalling pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2018.05.035DOI Listing
August 2018

Synthesis, Characterization and Biocompatibility of N-palmitoyl L-alanine-based Organogels as Sustained Implants of Granisetron and Evaluation of thier Antiemetic Effect.

Pharm Res 2018 May 29;35(8):149. Epub 2018 May 29.

Pharmacology and Toxicology Department, Faculty of Pharmacy,, Cairo University, Cairo, 11562, Egypt.

Purpose: To assess the gelation power of N-palmitoyl L-alanine derivatives in injectable oils and to use the best chosen organogel as parenteral implant of granisetron for the treatment of emesis.

Methods: Twelve N-palmitoyl L-alanine derived organogels were developed and evaluated in terms of morphology, thermal properties and in vivo performance. The ability of the selected formula to form in situ gel upon subcutaneous injection in rats and its biocompatibility were monitored over 2 weeks by histopathological examination of the injection site.

Results: The acid derivative (N-palmitoyl L-alanine; PA) was superior to ester derivatives. The chosen formula (PA/safflower oil 10% w/v) was successful in forming an in situ gel of granisetron when subcutaneously injected in rats, lasting for 2 weeks and proved to be biocompatible by histopathological examination. Moreover, it exerted an extended antiemetic activity by decreasing the cisplatin-induced pica for a duration of 96 h and reduced preprotachykinin A mRNA expression and Substance P level for up to 4 days (gastric tissue) or 5 days (medulla oblongata) in rats.

Conclusion: Granisetron organogel could be considered as a safe, sustained-release and supportive anticancer treatment in both acute and chronic emesis as well as an accompanying treatment with chemotherapeutics in cancer cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-018-2433-2DOI Listing
May 2018

Therapeutic effects of lornoxicam-loaded nanomicellar formula in experimental models of rheumatoid arthritis.

Int J Nanomedicine 2017 22;12:7015-7023. Epub 2017 Sep 22.

Department of Biochemistry.

Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease treated by nonsteroidal anti-inflammatory drugs (NSAIDs) including lornoxicam (LX). Nanocarriers have been used to increase the efficacy and reduce the side effects of various drugs. The objective of the present study was to compare the therapeutic efficacy of systemic administration of lornoxicam-loaded nanomicellar formula (LX-NM) with that of free LX.

Materials And Methods: The LX-loaded mixed polymeric nanomicellar formula was prepared by direct equilibrium technique. Two rat models were used in the study: carrageenan-induced acute edema and Freund's complete adjuvant (FCA)-induced chronic arthritis.

Results: The inhibitory effect of LX-NM on carrageenan-induced edema was higher than free LX for the same dose (1.3 mg/kg, i.p.). LX-NM (0.325 mg/kg, i.p.) produced effects comparable to that of diclofenac, which served as a standard. In the FCA model, daily treatment with LX-NM (0.325 mg/kg, i.p.) starting on day 14 significantly reduced the percentage of edema and increased weight growth. However, the same dose of LX failed to confer any significant change. Additionally, LX-NM significantly attenuated the rise of tumor necrosis factor-α (TNF-α), interleukin-1β, prostaglandin E2, nuclear factor-κβ, malondialdehyde and nitric oxide serum levels. In contrast, LX failed to show any significant reduction in elevated serum biomarkers except for TNF-α.

Conclusion: LX-NM is an alternative delivery system that is simply prepared at low costs. It showed a superior therapeutic efficacy against RA compared to free LX. Thus, LX-NM can be considered as a promising candidate for treatment of RA and similar inflammatory disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/IJN.S147738DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626385PMC
January 2018

Modulation of TGF-β/Smad and ERK signaling pathways mediates the anti-fibrotic effect of mirtazapine in mice.

Toxicol Appl Pharmacol 2017 08 13;329:224-230. Epub 2017 Jun 13.

Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt. Electronic address:

Serotonin (5-HT) has been implicated as a key driver of liver fibrosis, acting via 5-HT2 receptor activation in the hepatic stellate cells. The current study was conducted to investigate the effects of mirtazapine, a 5-HT2A antagonist, in a mouse model of liver fibrosis. Mice received thioacetamide (TAA, 150mg/kg/biweekly, ip) for nine successive weeks for induction of liver fibrosis. Administration of mirtazapine significantly improved the plasma aminotransferases, reduced hepatic 5-HT concentration and ameliorated TAA-induced liver fibrosis, as demonstrated by reduced portal blood pressure, liver procollagen I content and α alpha smooth muscle actin expression. Moreover, hepatic collagen deposition was markedly decreased in mirtazapine-treated mice as evaluated by Masson's trichrome staining. Mirtazapine provided an antifibrotic environment by decreasing the liver content of transforming growth factor-β1 (TGF-β1), and protein kinase C as well as the expression of phosphorylated-Smad3 (p-Smad) and phosphorylated extracellular signal-regulated kinases 1 and 2 (p-ERK1/2). Additionally, oxidative stress was largely mitigated by mirtazapine as manifested by decreased liver lipid peroxidation and NADPH oxidase 1 along with glutathione replenishment. The current study indicates that mirtazapine suppressed 5-HT-mediated TGF-β1/Smad3 and ERK1/2 signaling pathways as well as oxidative stress that contribute to the progression of liver fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2017.06.012DOI Listing
August 2017

Modulatory Role of Nurr1 Activation and Thrombin Inhibition in the Neuroprotective Effects of Dabigatran Etexilate in Rotenone-Induced Parkinson's Disease in Rats.

Mol Neurobiol 2018 May 5;55(5):4078-4089. Epub 2017 Jun 5.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.

Recently, it has been shown that both decreased nuclear receptor-related 1 (Nurr1) expression and thrombin accumulation are involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). The new anticoagulant dabigatran etexilate (DE) is a direct thrombin inhibitor that owns benzimidazole group, which has been proposed to activate Nurr1. In the present study, we examined the neuroprotective effects of DE in rotenone model of PD. Rotenone was injected subcutaneously at a dose of 1.5 mg/kg every other day for 21 days. An oral regimen of DE (15 mg/kg) was started after the 5th rotenone injection following the manifestations of PD. Treatment of PD rats with DE mitigated rotenone-induced neuronal degeneration and restored striatal dopamine level with motor recovery. As well, DE enhanced Nurr1 expression in substantia nigra along with increasing transcriptional activation of Nurr1-controlled genes namely tyrosine hydroxylase, vascular monoamine transporter, glial cell line-derived neurotrophic factor, and its receptor gene c-Ret, which are critical for development and maintenance of dopaminergic neurons. DE also suppressed thrombin accumulation in substantia nigra. Both effects probably contributed to repressing neurotoxic proinflammatory cytokines, which was manifested by decreased level of nuclear factor kappa beta and tumor necrosis factor alpha. In conclusion, the present results suggest that DE could possess significant neuroprotective and regenerative effects in a rotenone-induced PD animal model as consequence of Nurr1 activation and thrombin inhibition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-017-0636-xDOI Listing
May 2018

Dapoxetine attenuates testosterone-induced prostatic hyperplasia in rats by the regulation of inflammatory and apoptotic proteins.

Toxicol Appl Pharmacol 2016 Nov 27;311:52-60. Epub 2016 Sep 27.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Serotonin level plays a role in suppressing the pathological findings of benign prostatic hyperplasia (BPH). Thus a new selective serotonin reuptake inhibitor, dapoxetine was used to test its ability to ameliorate the pathological changes in the rat prostate. A dose response curve was constructed between the dose of dapoxetine and prostate weight as well as relative prostate weight, then a 5mg/kg dose was used as a representative dose for dapoxetine administration. Rats were divided into four groups; the control group that received the vehicle; the BPH-induced group received daily s.c injection of 3mg/kg testosterone propionate dissolved in olive oil for four weeks; BPH-induced group treated with finasteride 5mg/kg/day p.o and BPH-induced group treated with dapoxetine 5mg/kg/day p.o. Injection of testosterone increased prostate weight and relative prostate weight which were both returned back to the normal value after treatment with dapoxetine as well as finasteride. Testosterone also upregulated androgen receptor (AR) and proliferating cell nuclear antigen gene expression. Furthermore, testosterone injection elevated cyclooxygenase-II (COX II), inducible nitric oxide synthase (iNOS), B-cell lymphoma-2 (Bcl2) expression and tumor necrosis factor alpha content and reduced caspase-3 activity, Bcl-2-associated X protein (Bax) expression and Bax/Bcl2 ratio. Dapoxetine and finasteride administration reverted most of the changes made by testosterone injection. In conclusion, the current study provides an evidence for the protective effects of dapoxetine against testosterone-induced BPH in rats. This can be attributed, at least in part, to decreasing AR expression, and the anti-proliferative, anti-inflammatory and pro-apoptotic activities of dapoxetine in BPH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2016.09.024DOI Listing
November 2016

Sulforaphane increases the survival rate in rats with fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide.

Nutr Res 2014 Nov 7;34(11):982-9. Epub 2014 Oct 7.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Fulminant hepatic failure (FHF) is a life-threatening clinical syndrome, with liver transplantation being the only effective therapy. Sulforaphane (SFN) is a natural compound that is extracted from cruciferous vegetables and possesses potent anti-inflammatory, antioxidant, and anticancer activities. This study was designed to test the hypothesis that SFN (3 mg/kg) may protect against FHF induced in rats by administering a combination of D-galactosamine (GalN; 300 mg/kg) and lipopolysaccharide (LPS; 30 μg/kg). The rats were given a single intraperitoneal injection of SFN, 1 hour before the FHF induction. Sulforaphane reduced the mortality and alleviated the pathological liver injury. In addition, SFN significantly reduced the increase in serum aminotransferase activities and lipid peroxidation. The glutathione content decreased in the GalN/LPS group, and this decrease was attenuated by SFN. Increases in serum tumor necrosis factor α, interleukin-6, and interleukin-10, which were observed in GalN/LPS-treated rats, were significantly reduced after using SFN. The GalN/LPS treatment increased the expression of superoxide dismutase-1, glutathione peroxidase 2, catalase, and heme oxygenase-1 genes. Sulforaphane inhibited the induction of reactive oxygen species scavenging proteins. Moreover, SFN inhibited GalN/LPS-induced caspase-3 activation and suppressed FAS and FASL expression. These findings suggest that SFN alleviates GalN/LPS-induced liver injury, possibly by exerting antioxidant, anti-inflammatory, and antiapoptotic effects and modulating certain antioxidant defense enzymes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nutres.2014.10.003DOI Listing
November 2014

Potential protective effect of taurine against dibromoacetonitrile-induced neurotoxicity in rats.

Environ Toxicol Pharmacol 2012 Nov 5;34(3):849-57. Epub 2012 Sep 5.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Dibromoacetonitrile (DBAN) is a disinfection by-product of water chlorination. Epidemiological studies indicate that it might present a potential hazard to human health. The present study aimed to investigate the possible neurotoxicity of DBAN in rats and possible protection by taurine. Based on initial dose-response experiment, DBAN (60 mg/kg) was administrated orally for 7 days. DBAN administration significantly impaired behavior of rats. Further, DBAN produced significant decrease of monoamines, γ-aminobutyric acid (GABA), glutamate contents, acetylcholinestrase (AChE) and aspartate aminotransferase (AST) activities, in rat brain. On the other hand, a significant increase in malondialdehyde (MDA), nitric oxide (NO) contents and lactic dehydrogenase (LDH) activity was observed. Co-administration of taurine (200mg/kg, i.p.) with DBAN mitigated most tested parameters. In conclusion, the present study indicates that DBAN has the propensity to cause significant oxidative damage in rat brain. However, taurine has a promising role in attenuating the obtained hazardous effects of DBAN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2012.08.015DOI Listing
November 2012