Publications by authors named "Qiuyin Cai"

392 Publications

Legume Consumption and Gut Microbiome in Elderly Chinese Men and Women.

J Nutr 2021 Jun 10. Epub 2021 Jun 10.

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: Legumes, important components of a healthy diet, may exert their health benefits through the influence of the gut microbiome. However, this hypothesis has not been well investigated.

Objective: This study aimed to examine the associations between long-term legume consumption and the gut microbiome among elderly Chinese.

Methods: The gut microbiome was profiled by 16S ribosomal RNA sequencing in 2302 Chinese adults enrolled in 2 large cohort studies, the Shanghai Women's Health Study and Shanghai Men's Health Study. Legume consumption, including peanuts, soy foods, and other beans, was assessed by food-frequency questionnaires prior to the stool collection. The associations of legume consumption with microbiome diversity and taxa abundance were evaluated by linear or negative binomial hurdle models, adjusting for sociodemographics, lifestyle factors, and BMI. False discovery rate (FDR)-corrected P values (PFDR) < 0.1 were considered significant.

Results: Respectively, 52% and 48% of study participants were male and female. The mean age at stool collection was 68.03 y for females and 70.28 y for males. Total legume consumption was not associated with gut microbiome ɑ-diversity; however, male peanut consumers had a higher Chao1 index (β = 22.52, P = 0.01), whereas peanut consumption was associated with decreased Shannon (β = -0.03, P = 0.02) and Simpson (β = -0.002, P = 0.04) indexes among females. In female and male combined analyses, total legume consumption was associated with increased Enterobacteriales (β = 0.30, PFDR = 0.06). Within this order, an unclassified genus in the family Enterobacteriaceae was positively associated with total legume (β = 0.46, PFDR = 0.03) and peanut (β = 0.59, PFDR = 0.01) consumption. Stratified analyses showed significant associations were primarily confined to females and participants without metabolic conditions.

Conclusions: Legume consumption was associated with gut microbiome diversity and abundance of some bacteria in elderly Chinese. Associations were significant only among 1 sex group. Further research, including large-scale prospective studies and feeding trials, is needed to fully understand the role of the gut microbiome in legume-health associations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/nxab139DOI Listing
June 2021

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 Jun 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Associations of circulating choline and its related metabolites with cardiometabolic biomarkers: an international pooled analysis.

Am J Clin Nutr 2021 May 21. Epub 2021 May 21.

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: Choline is an essential nutrient; however, the associations of choline and its related metabolites with cardiometabolic risk remain unclear.

Objective: We examined the associations of circulating choline, betaine, carnitine, and dimethylglycine (DMG) with cardiometabolic biomarkers and their potential dietary and nondietary determinants.

Methods: The cross-sectional analyses included 32,853 participants from 17 studies, who were free of cancer, cardiovascular diseases, chronic kidney diseases, and inflammatory bowel disease. In each study, metabolites and biomarkers were log-transformed and standardized by means and SDs, and linear regression coefficients (β) and 95% CIs were estimated with adjustments for potential confounders. Study-specific results were combined by random-effects meta-analyses. A false discovery rate <0.05 was considered significant.

Results: We observed moderate positive associations of circulating choline, carnitine, and DMG with creatinine [β (95% CI): 0.136 (0.084, 0.188), 0.106 (0.045, 0.168), and 0.128 (0.087, 0.169), respectively, for each SD increase in biomarkers on the log scale], carnitine with triglycerides (β = 0.076; 95% CI: 0.042, 0.109), homocysteine (β = 0.064; 95% CI: 0.033, 0.095), and LDL cholesterol (β = 0.055; 95% CI: 0.013, 0.096), DMG with homocysteine (β = 0.068; 95% CI: 0.023, 0.114), insulin (β = 0.068; 95% CI: 0.043, 0.093), and IL-6 (β = 0.060; 95% CI: 0.027, 0.094), but moderate inverse associations of betaine with triglycerides (β = -0.146; 95% CI: -0.188, -0.104), insulin (β = -0.106; 95% CI: -0.130, -0.082), homocysteine (β = -0.097; 95% CI: -0.149, -0.045), and total cholesterol (β = -0.074; 95% CI: -0.102, -0.047). In the whole pooled population, no dietary factor was associated with circulating choline; red meat intake was associated with circulating carnitine [β = 0.092 (0.042, 0.142) for a 1 serving/d increase], whereas plant protein was associated with circulating betaine [β = 0.249 (0.110, 0.388) for a 5% energy increase]. Demographics, lifestyle, and metabolic disease history showed differential associations with these metabolites.

Conclusions: Circulating choline, carnitine, and DMG were associated with unfavorable cardiometabolic risk profiles, whereas circulating betaine was associated with a favorable cardiometabolic risk profile. Future prospective studies are needed to examine the associations of these metabolites with incident cardiovascular events.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqab152DOI Listing
May 2021

Long-term Diet Quality and Gut Microbiome Functionality: A Prospective, Shotgun Metagenomic Study among Urban Chinese Adults.

Curr Dev Nutr 2021 Apr 2;5(4):nzab026. Epub 2021 Apr 2.

Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: Diet is known to affect human gut microbiome composition; yet, how diet affects gut microbiome functionality remains unclear.

Objective: We compared the diversity and abundance/presence of fecal microbiome metabolic pathways among individuals according to their long-term diet quality.

Methods: In 2 longitudinal cohorts, we assessed participants' usual diets via repeated surveys during 1996-2011 and collected a stool sample in 2015-2018. Participants who maintained a healthy or unhealthy diet (i.e., stayed in the highest or lowest quintile of a healthy diet score throughout follow-up) were selected. Participants were excluded if they reported a history of cancer, cardiovascular disease, diabetes, or hypertension; had diarrhea or constipation in the last 7 d; or used antibiotics in the last 6 mo before stool collection. Functional profiling of shotgun metagenomics was performed using HUMAnN2. Associations of dietary variables and 420 microbial metabolic pathways were evaluated via multivariable-adjusted linear or logistic regression models.

Results: We included 144 adults (mean age = 64 y; 55% female); 66 had an unhealthy diet and 78 maintained a healthy diet. The healthy diet group had higher Shannon α-diversity indexes of microbial gene families and metabolic pathways (both < 0.02), whereas β-diversity, as evaluated by Bray-Curtis distance, did not differ between groups (both > 0.50). At < 0.01 [false discovery rate (FDR) <0.15], the healthy diet group showed enriched pathways for vitamin and carrier biosynthesis (e.g., tetrahydrofolate, acetyl-CoA, and l-methionine) and tricarboxylic acid (TCA) cycle, and increased degradation (or reduced biosynthesis) of certain sugars [e.g., cytidine monophosphate (CMP)-legionaminate, deoxythymidine diphosphate (dTDP)-l-rhamnose, and sucrose], nucleotides, 4-aminobutanoate, methylglyoxal, sulfate, and aromatic compounds (e.g., catechol and toluene). Meanwhile, several food groups were associated with the CMP-legionaminate biosynthesis pathway at FDR <0.05.

Conclusions: In a small longitudinal study of generally healthy, older Chinese adults, we found long-term healthy eating was associated with increased α-diversity of microbial gene families and metabolic pathways and altered symbiotic functions relevant to human nutrition and health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cdn/nzab026DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068758PMC
April 2021

Functional Genomic Analyses of the 21q22.3 Locus Identifying Functional Variants and Candidate Gene for Breast Cancer Risk.

Cancers (Basel) 2021 Apr 23;13(9). Epub 2021 Apr 23.

Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.

We previously identified a locus at 21q22.3, tagged by the single nucleotide polymorphism (SNP) rs35418111, being associated with breast cancer risk at a genome-wide significance level; however, the underlying causal functional variants and gene(s) responsible for this association are unknown. We performed functional genomic analyses to identify potential functional variants and target genes that may mediate this association. Functional annotation for SNPs in high linkage disequilibrium (LD, r > 0.8) with rs35418111 in Asians showed evidence of promoter and/or enhancer activities, including rs35418111, rs2078203, rs8134832, rs57385578, and rs8126917. These five variants were assessed for interactions with nuclear proteins by electrophoretic mobility shift assays. Our results showed that the risk alleles for rs2078203 and rs35418111 altered DNA-protein interaction patterns. Cis-expression quantitative loci (cis-eQTL) analysis, using data from the Genotype-Tissue Expression database (GTEx) European-ancestry female normal breast tissue, indicated that the risk allele of rs35418111 was associated with a decreased expression of the gene, a relatively uncharacterized endoribonuclease in humans. We investigated the biological effects of on breast cancer cell lines by transient knock-down of expression in MCF-7, T47D, and MDA-MB-231 cell lines. Knockdown of mRNA in breast cancer cell lines consistently decreased cell proliferation, colony formation, and migration/invasion, regardless of estrogen receptor status. We performed RNA sequencing in MDA-MB-231 cells transfected with siRNA targeting and subsequent gene set enrichment analysis to identify gene networks associated with knockdown. These data indicated was involved in networks associated with inflammation and metabolism. Finally, we showed trends in expression patterns in breast tissues from The Cancer Genome Atlas (TCGA); early-stage breast cancers had elevated expression compared with normal tissue, but significantly decreased expression in late-stage disease. Our study provides evidence of a significant role for the human gene in breast cancer pathogenesis and the association between the rs35418111/21q22.3 locus and breast cancer risk, which may be mediated through functional SNPs, rs35418111 and rs2078203, that regulate expression of .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13092037DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122893PMC
April 2021

Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis.

Am J Clin Nutr 2021 05;113(5):1145-1156

Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: Trimethylamine N-oxide (TMAO), a diet-derived, gut microbial-host cometabolite, has been linked to cardiometabolic diseases. However, the relations remain unclear between diet, TMAO, and cardiometabolic health in general populations from different regions and ethnicities.

Objectives: To examine associations of circulating TMAO with dietary and cardiometabolic factors in a pooled analysis of 16 population-based studies from the United States, Europe, and Asia.

Methods: Included were 32,166 adults (16,269 white, 13,293 Asian, 1247 Hispanic/Latino, 1236 black, and 121 others) without cardiovascular disease, cancer, chronic kidney disease, or inflammatory bowel disease. Linear regression coefficients (β) were computed for standardized TMAO with harmonized variables. Study-specific results were combined by random-effects meta-analysis. A false discovery rate <0.10 was considered significant.

Results: After adjustment for potential confounders, circulating TMAO was associated with intakes of animal protein and saturated fat (β = 0.124 and 0.058, respectively, for a 5% energy increase) and with shellfish, total fish, eggs, and red meat (β = 0.370, 0.151, 0.081, and 0.056, respectively, for a 1 serving/d increase). Plant protein and nuts showed inverse associations (β = -0.126 for a 5% energy increase from plant protein and -0.123 for a 1 serving/d increase of nuts). Although the animal protein-TMAO association was consistent across populations, fish and shellfish associations were stronger in Asians (β = 0.285 and 0.578), and egg and red meat associations were more prominent in Americans (β = 0.153 and 0.093). Besides, circulating TMAO was positively associated with creatinine (β = 0.131 SD increase in log-TMAO), homocysteine (β = 0.065), insulin (β = 0.048), glycated hemoglobin (β = 0.048), and glucose (β = 0.023), whereas it was inversely associated with HDL cholesterol (β = -0.047) and blood pressure (β = -0.030). Each TMAO-biomarker association remained significant after further adjusting for creatinine and was robust in subgroup/sensitivity analyses.

Conclusions: In an international, consortium-based study, animal protein was consistently associated with increased circulating TMAO, whereas TMAO associations with fish, shellfish, eggs, and red meat varied among populations. The adverse associations of TMAO with certain cardiometabolic biomarkers, independent of renal function, warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqaa430DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106754PMC
May 2021

A Prospective Investigation of Circulating Metabolome Identifies Potential Biomarkers for Gastric Cancer Risk.

Cancer Epidemiol Biomarkers Prev 2021 Apr 1. Epub 2021 Apr 1.

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.

Background: Metabolomics is widely used to identify potential novel biomarkers for cancer risk. No investigation, however, has been conducted to prospectively evaluate the role of perturbation of metabolome in gastric cancer development.

Methods: 250 incident cases diagnosed with primary gastric cancer were selected from the Shanghai Women's Health and the Shanghai Men's Health Study, and each was individually matched to one control by incidence density sampling. An untargeted global profiling platform was used to measure approximately 1,000 metabolites in prediagnostic plasma. Conditional logistic regression was utilized to generate ORs and values.

Results: Eighteen metabolites were associated with gastric cancer risk at < 0.01. Among them, 11 metabolites were lysophospholipids or lipids of other classes; for example, 1-(1-enyl-palmitoyl)-GPE (P-16:0) (OR = 1.56; = 1.89 × 10). Levels of methylmalonate, a suggested biomarker of vitamin B12 deficiency, was correlated with increased gastric cancer risk (OR = 1.42; = 0.004). Inverse associations were found for three biomarkers for coffee/tea consumption (3-hydroxypyridine sulfate, quinate and N-(2-furoyl) glycine), although the associations were only significant when comparing cases that were diagnosed within 5 years after the blood collection to matched controls. Most of the identified associations were more profound in women and never smokers than their male or ever smoking counterparts and some with notable significant interactions.

Conclusions: Our study identified multiple potential risk biomarkers for gastric cancer independent of infection and other major risk factors.

Impact: New risk-assessment tools to identify high-risk population could be developed to improve prevention of gastric cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-20-1633DOI Listing
April 2021

Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.

Am J Hum Genet 2021 04 12;108(4):564-582. Epub 2021 Mar 12.

The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059339PMC
April 2021

Prospective study of plasma levels of coenzyme Q10 and lung cancer risk in a low-income population in the Southeastern United States.

Cancer Med 2021 02 6;10(4):1439-1447. Epub 2021 Feb 6.

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.

Background: Coenzyme Q10 (CoQ10) is a ubiquitous molecule in living organisms serving as a cofactor in energy production. Epidemiological studies have reported low CoQ10 levels being associated with an increased risk of various cancers. We conducted the first study to evaluate the association of CoQ10 concentrations with lung cancer risk.

Methods: A nested case-control study including 201 lung cancer cases and 395 matched controls from the Southern Community Cohort Study was conducted. Plasma CoQ10 levels were measured using high-performance liquid chromatography with photo-diode array detection. Conditional logistic regression models were applied to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between plasma CoQ10 levels and lung cancer risk.

Results: Plasma CoQ10 concentration was inversely associated with the risk of lung cancer. After adjusting for age, sex, race, and socioeconomic status, the OR (95% CI) comparing the third to first tertile was 0.57 (0.36-0.91, P for trend = 0.02). Further adjustments for smoking, alcohol, chronic obstructive pulmonary disease, and body mass index attenuated the point estimate slightly (OR = 0.60, 95% CI = 0.34-1.08, P for trend = 0.11), comparing third to first tertiles. Stratified analyses identified a significant inverse association between plasma CoQ10 levels and lung cancer risk in current smokers, but not in former/never smokers. The association was more evident in cases who were diagnosed within 1 year of blood draw than in cases diagnosed after 1 year.

Conclusions: Low plasma CoQ10 was significantly associated with increased lung cancer risk, particularly among current smokers. The stronger association seen shortly following the blood draw suggests that CoQ10 may be related to disease progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cam4.3637DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926017PMC
February 2021

Multi-omics analysis to identify susceptibility genes for colorectal cancer.

Hum Mol Genet 2021 Apr;30(5):321-330

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.

Most genetic variants for colorectal cancer (CRC) identified in genome-wide association studies (GWAS) are located in intergenic regions, implying pathogenic dysregulations of gene expression. However, comprehensive assessments of target genes in CRC remain to be explored. We conducted a multi-omics analysis using transcriptome and/or DNA methylation data from the Genotype-Tissue Expression, The Cancer Genome Atlas and the Colonomics projects. We identified 116 putative target genes for 45 GWAS-identified variants. Using summary-data-based Mendelian randomization approach (SMR), we demonstrated that the CRC susceptibility for 29 out of the 45 CRC variants may be mediated by cis-effects on gene regulation. At a cutoff of the Bonferroni-corrected PSMR < 0.05, we determined 66 putative susceptibility genes, including 39 genes that have not been previously reported. We further performed in vitro assays for two selected genes, DIP2B and SFMBT1, and provide functional evidence that they play a vital role in colorectal carcinogenesis via disrupting cell behavior, including migration, invasion and epithelial-mesenchymal transition. Our study reveals a large number of putative novel susceptibility genes and provides additional insight into the underlying mechanisms for CRC genetic risk loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab021DOI Listing
April 2021

MicroRNA-374b inhibits breast cancer progression through regulating CCND1 and TGFA genes.

Carcinogenesis 2021 Apr;42(4):528-536

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.

Emerging evidence indicates that microRNAs (miRNAs) play a critical role in breast cancer development. We recently reported that a higher expression of miR-374b in tumor tissues was associated with a better disease-free survival of triple-negative breast cancer (TNBC). However, the functional significance and molecular mechanisms underlying the role of miR-374b in breast cancer are largely unknown. In this current study, we evaluated the biological functions and potential mechanisms of miR-374b in both TNBC and non-TNBC. We found that miR-374b was significantly downregulated in breast cancer tissues, compared to adjacent tissues. MiR-374b levels were also lower in breast cancer cell lines, as compared to breast epithelial cells. In vitro and in vivo studies demonstrated that miR-374b modulates the malignant behavior of breast cancer cells, such as cell proliferation in 2D and 3D, cell invasion ability, colony-forming ability and tumor growth in mice. By using bioinformatics tools, we predicted that miR-374b plays a role in breast cancer cells through negatively regulating cyclin D1 (CCND1) and transforming growth factor alpha (TGFA). We further confirmed that CCND1 and TGFA contribute to the malignant behavior of breast cancer cells in vitro and in vivo. Our rescue experiments showed that overexpressing CCND1 or TGFA reverses the phenotypes caused by miR-374b overexpression. Taken together, our studies suggest that miR-374b modulates malignant behavior of breast cancer cells by negatively regulating CCND1 and TGFA genes. The newly identified miR-374b-mediated CCND1 and TGFA gene silencing may facilitate a better understanding of the molecular mechanisms of breast cancer progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgab005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086770PMC
April 2021

Long-term diet quality is associated with gut microbiome diversity and composition among urban Chinese adults.

Am J Clin Nutr 2021 03;113(3):684-694

Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: Few population-based studies have evaluated the influence of long-term diet on the gut microbiome, and data among Asian populations are lacking.

Objective: We examined the association of long-term diet quality, comprising 8 food groups (fruit, vegetables, dairy, fish/seafood, nuts/legumes, refined grains, red meat, and processed meat), with gut microbiome among Chinese adults.

Methods: Included were 1920 men and women, enrolled in 2 prospective cohorts (baseline 1996-2006), who remained free of cardiovascular diseases, diabetes, and cancer at stool collection (2015-2018) and had no diarrhea or antibiotic use in the last 7 d before stool collection. Microbiome was profiled by 16S rRNA sequencing. Long-term diet was assessed by repeated surveys at baseline and follow-ups (1996-2011), with intervals of 5.2 to 20.5 y between dietary surveys and stool collection. Associations of dietary variables with microbiome diversity and composition were evaluated by linear or negative binomial hurdle models, adjusting for potential confounders. False discovery rate (FDR) <0.1 was considered significant.

Results: The mean ± SD age at stool collection was 68 ± 1.5 y. Diet quality was positively associated with microbiome α-diversity (P = 0.03) and abundance of Firmicutes, Actinobacteria, Tenericutes, and genera/species within these phyla, including Coprococcus, Faecalibacterium/Faecalibacterium prausnitzii, Bifidobacterium / Bifidobacterium adolescentis, and order RF39 (all FDRs <0.1). Significant associations were also observed for intakes of dairy, fish/seafood, nuts/legumes, refined grains, and processed meat, including a positive association of dairy with Bifidobacterium and inverse associations of processed meat with Roseburia /Roseburia faecis. Most associations were similar, with or without adjustment for BMI and hypertension status or excluding participants with antibiotic use in the past 6 mo.

Conclusion: Among apparently healthy Chinese adults, long-term diet quality is positively associated with fecal microbiome diversity and abundance of fiber-fermenting bacteria, although magnitudes are generally small. Future studies are needed to examine if these bacteria may mediate or modify diet-disease relations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqaa350DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948864PMC
March 2021

Sub-multiplicative interaction between polygenic risk score and household coal use in relation to lung adenocarcinoma among never-smoking women in Asia.

Environ Int 2021 02 29;147:105975. Epub 2020 Dec 29.

Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.

We previously identified 10 lung adenocarcinoma susceptibility loci in a genome-wide association study (GWAS) conducted in the Female Lung Cancer Consortium in Asia (FLCCA), the largest genomic study of lung cancer among never-smoking women to date. Furthermore, household coal use for cooking and heating has been linked to lung cancer in Asia, especially in Xuanwei, China. We investigated the potential interaction between genetic susceptibility and coal use in FLCCA. We analyzed GWAS-data from Taiwan, Shanghai, and Shenyang (1472 cases; 1497 controls), as well as a separate study conducted in Xuanwei (152 cases; 522 controls) for additional analyses. We summarized genetic susceptibility using a polygenic risk score (PRS), which was the weighted sum of the risk-alleles from the 10 previously identified loci. We estimated associations between a PRS, coal use (ever/never), and lung adenocarcinoma with multivariable logistic regression models, and evaluated potential gene-environment interactions using likelihood ratio tests. There was a strong association between continuous PRS and lung adenocarcinoma among never coal users (Odds Ratio (OR) = 1.69 (95% Confidence Interval (CI) = 1.53, 1.87), p=1 × 10). This effect was attenuated among ever coal users (OR = 1.24 (95% CI: 1.03, 1.50), p = 0.02, p-interaction = 6 × 10). We observed similar attenuation among coal users from Xuanwei. Our study provides evidence that genetic susceptibility to lung adenocarcinoma among never-smoking Asian women is weaker among coal users. These results suggest that lung cancer pathogenesis may differ, at least partially, depending on exposure to coal combustion products. Notably, these novel findings are among the few instances of sub-multiplicative gene-environment interactions in the cancer literature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.105975DOI Listing
February 2021

Variation in oral microbiome is associated with future risk of lung cancer among never-smokers.

Thorax 2021 03 14;76(3):256-263. Epub 2020 Dec 14.

National Cancer Institute, Bethesda, Maryland, USA.

Objective: To prospectively investigate whether diversity in oral microbiota is associated with risk of lung cancer among never-smokers.

Design And Setting: A nested case-control study within two prospective cohort studies, the Shanghai Women's Health Study (n=74 941) and the Shanghai Men's Health Study (n=61 480).

Participants: Lifetime never-smokers who had no cancer at baseline. Cases were subjects who were diagnosed with incident lung cancer (n=114) and were matched 1:1 with controls on sex, age (≤2 years), date (≤30 days) and time (morning/afternoon) of sample collection, antibiotic use during the week before sample collection (yes/no) and menopausal status (for women).

Main Outcomes And Measures: Metagenomic shotgun sequencing was used to measure the community structure and abundance of the oral microbiome in pre-diagnostic oral rinse samples of each case and control. Multivariable logistic regression models were used to estimate the association of lung cancer risk with alpha diversity metrics and relative abundance of taxa. The Microbiome Regression-Based Kernel Association Test (MiRKAT) evaluated the association between risk and the microbiome beta diversity.

Results: Subjects with lower microbiota alpha diversity had an increased risk of lung cancer compared with those with higher microbial alpha diversity (Shannon: p=0.05; Simpson: p=0.04; Observed Species: p=0.64). No case-control differences were apparent for beta diversity (p=0.30). After accounting for multiple comparisons, a greater abundance of Spirochaetia (OR 1.00 (reference), OR 0.61 (95% CI 0.32 to 1.18), OR 0.42 (95% CI 0.21 to 0.85)) and Bacteroidetes (OR 1.00 (reference), OR 0.66 (95% CI 0.35 to 1.25), OR 0.31 (95% CI 0.15 to 0.64)) was associated with a decreased risk of lung cancer, while a greater abundance of the Bacilli class (OR 1.00 (reference), OR 1.49 (95% CI 0.73 to 3.08), OR 2.40 (95% CI 1.18 to 4.87)) and Lactobacillales order (OR 1.00 (reference), OR 2.15 (95% CI 1.03 to 4.47), OR 3.26 (95% CI 1.58 to 6.70)) was associated with an increased risk of lung cancer.

Conclusions: Our prospective study of never-smokers suggests that lower alpha diversity was associated with a greater risk of lung cancer and the abundance of certain specific taxa was associated with altered risk, providing further insight into the aetiology of lung cancer in the absence of active tobacco smoking.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/thoraxjnl-2020-215542DOI Listing
March 2021

Association between lincRNA expression and overall survival for patients with triple-negative breast cancer.

Breast Cancer Res Treat 2021 Apr 27;186(3):769-777. Epub 2020 Nov 27.

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, 37203, USA.

Purpose: Long intergenic non-coding RNAs (lincRNAs) are increasingly recognized as important regulators for pathogenesis and/or prognosis of breast cancer, including triple-negative breast cancer (TNBC) subtype. However, few previous studies used RNA-sequencing (RNA-Seq) technology, and none included an independent replication.

Methods: To systematically evaluate the association between expression of lincRNAs and TNBC survival, we examined lincRNA expression profiles in TNBC tissues using RNA-Seq data for 200 TNBC patients from the Shanghai Breast Cancer Survival Study (SBCSS) and Southern Community Cohort Study (SCCS).

Results: Twenty-five lincRNAs were found to be associated with overall survival (P < 0.05 and no significant heterogeneity across studies at Q statistic P > 0.1), and 61 lincRNAs were associated with disease-free survival (DFS). Among these, two lincRNAs (LINC01270 and LINC00449) were significantly associated with both worse overall survival and DFS and were expressed at significantly higher levels in tumor tissues compared with adjacent normal breast tissues (log[Fold Change] > 0.5 and FDR < 0.05). We further evaluated the potential functions of LINC01270 and LINC00449 using in vitro functional experiments and found that siRNA-mediated knockdown of LINC01270 and LINC00449 expression significantly decreased cell viability, colony formation and cell migration ability in TNBC cells (P < 0.05).

Conclusions: Evidence from observational studies and in vitro experiments indicates that LINC00449 and LINC01270 may be prognostic biomarkers for TNBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-020-06021-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088339PMC
April 2021

Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects.

Gastroenterology 2021 Mar 12;160(4):1164-1178.e6. Epub 2020 Oct 12.

Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.

Background And Aims: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes.

Methods: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted.

Results: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis.

Conclusions: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2020.08.062DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956223PMC
March 2021

Recommended Definitions of Aggressive Prostate Cancer for Etiologic Epidemiologic Research.

J Natl Cancer Inst 2021 Jun;113(6):727-734

Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA.

Background: In the era of widespread prostate-specific antigen testing, it is important to focus etiologic research on the outcome of aggressive prostate cancer, but studies have defined this outcome differently. We aimed to develop an evidence-based consensus definition of aggressive prostate cancer using clinical features at diagnosis for etiologic epidemiologic research.

Methods: Among prostate cancer cases diagnosed in 2007 in the National Cancer Institute's Surveillance, Epidemiology, and End Results-18 database with follow-up through 2017, we compared the performance of categorizations of aggressive prostate cancer in discriminating fatal prostate cancer within 10 years of diagnosis, placing the most emphasis on sensitivity and positive predictive value (PPV).

Results: In our case population (n = 55 900), 3073 men died of prostate cancer within 10 years. Among 12 definitions that included TNM staging and Gleason score, sensitivities ranged from 0.64 to 0.89 and PPVs ranged from 0.09 to 0.23. We propose defining aggressive prostate cancer as diagnosis of category T4 or N1 or M1 or Gleason score of 8 or greater prostate cancer, because this definition had one of the higher PPVs (0.23, 95% confidence interval = 0.22 to 0.24) and reasonable sensitivity (0.66, 95% confidence interval = 0.64 to 0.67) for prostate cancer death within 10 years. Results were similar across sensitivity analyses.

Conclusions: We recommend that etiologic epidemiologic studies of prostate cancer report results for this definition of aggressive prostate cancer. We also recommend that studies separately report results for advanced category (T4 or N1 or M1), high-grade (Gleason score ≥8), and fatal prostate cancer. Use of this comprehensive set of endpoints will facilitate comparison of results from different studies and help elucidate prostate cancer etiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa154DOI Listing
June 2021

From tobacco smoking to cancer mutational signature: a mediation analysis strategy to explore the role of epigenetic changes.

BMC Cancer 2020 Sep 14;20(1):880. Epub 2020 Sep 14.

Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.

Background: Tobacco smoking is associated with a unique mutational signature in the human cancer genome. It is unclear whether tobacco smoking-altered DNA methylations and gene expressions affect smoking-related mutational signature.

Methods: We systematically analyzed the smoking-related DNA methylation sites reported from five previous casecontrol studies in peripheral blood cells to identify possible target genes. Using the mediation analysis approach, we evaluated whether the association of tobacco smoking with mutational signature is mediated through altered DNA methylation and expression of these target genes in lung adenocarcinoma tumor tissues.

Results: Based on data obtained from 21,108 blood samples, we identified 374 smoking-related DNA methylation sites, annotated to 248 target genes. Using data from DNA methylations, gene expressions and smoking-related mutational signature generated from ~ 7700 tumor tissue samples across 26 cancer types from The Cancer Genome Atlas (TCGA), we found 11 of the 248 target genes whose expressions were associated with smoking-related mutational signature at a Bonferroni-correction P < 0.001. This included four for head and neck cancer, and seven for lung adenocarcinoma. In lung adenocarcinoma, our results showed that smoking increased the expression of three genes, AHRR, GPR15, and HDGF, and decreased the expression of two genes, CAPN8, and RPS6KA1, which were consequently associated with increased smoking-related mutational signature. Additional evidence showed that the elevated expression of AHRR and GPR15 were associated with smoking-altered hypomethylations at cg14817490 and cg19859270, respectively, in lung adenocarcinoma tumor tissues. Lastly, we showed that decreased expression of RPS6KA1, were associated with poor survival of lung cancer patients.

Conclusions: Our findings provide novel insight into the contributions of tobacco smoking to carcinogenesis through the underlying mechanisms of the elevated mutational signature by altered DNA methylations and gene expressions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-020-07368-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488848PMC
September 2020

An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk.

Nat Commun 2020 08 6;11(1):3905. Epub 2020 Aug 6.

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.

It remains elusive whether some of the associations identified in genome-wide association studies of prostate cancer (PrCa) may be due to regulatory effects of genetic variants on CpG sites, which may further influence expression of PrCa target genes. To search for CpG sites associated with PrCa risk, here we establish genetic models to predict methylation (N = 1,595) and conduct association analyses with PrCa risk (79,194 cases and 61,112 controls). We identify 759 CpG sites showing an association, including 15 located at novel loci. Among those 759 CpG sites, methylation of 42 is associated with expression of 28 adjacent genes. Among 22 genes, 18 show an association with PrCa risk. Overall, 25 CpG sites show consistent association directions for the methylation-gene expression-PrCa pathway. We identify DNA methylation biomarkers associated with PrCa, and our findings suggest that specific CpG sites may influence PrCa via regulating expression of candidate PrCa target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-17673-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413371PMC
August 2020

Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk.

Sci Rep 2020 06 16;10(1):9688. Epub 2020 Jun 16.

Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany.

In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-65665-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297796PMC
June 2020

Differences in gene-expression profiles in breast cancer between African and European-ancestry women.

Carcinogenesis 2020 07;41(7):1015

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgaa041DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359761PMC
July 2020

Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk.

Cancer Epidemiol Biomarkers Prev 2020 07 21;29(7):1501-1508. Epub 2020 May 21.

Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota.

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with few known risk factors and biomarkers. Several blood protein biomarkers have been linked to PDAC in previous studies, but these studies have assessed only a limited number of biomarkers, usually in small samples. In this study, we evaluated associations of circulating protein levels and PDAC risk using genetic instruments.

Methods: To identify novel circulating protein biomarkers of PDAC, we studied 8,280 cases and 6,728 controls of European descent from the Pancreatic Cancer Cohort Consortium and the Pancreatic Cancer Case-Control Consortium, using genetic instruments of protein quantitative trait loci.

Results: We observed associations between predicted concentrations of 38 proteins and PDAC risk at an FDR of < 0.05, including 23 of those proteins that showed an association even after Bonferroni correction. These include the protein encoded by , which has been implicated as a potential target gene of PDAC risk variant. Eight of the identified proteins (LMA2L, TM11D, IP-10, ADH1B, STOM, TENC1, DOCK9, and CRBB2) were associated with PDAC risk after adjusting for previously reported PDAC risk variants (OR ranged from 0.79 to 1.52). Pathway enrichment analysis showed that the encoding genes for implicated proteins were significantly enriched in cancer-related pathways, such as STAT3 and IL15 production.

Conclusions: We identified 38 candidates of protein biomarkers for PDAC risk.

Impact: This study identifies novel protein biomarker candidates for PDAC, which if validated by additional studies, may contribute to the etiologic understanding of PDAC development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-20-0091DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334065PMC
July 2020

Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk.

J Natl Cancer Inst 2021 Mar;113(3):329-337

Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

We evaluated the joint associations between a new 313-variant PRS (PRS313) and questionnaire-based breast cancer risk factors for women of European ancestry, using 72 284 cases and 80 354 controls from the Breast Cancer Association Consortium. Interactions were evaluated using standard logistic regression and a newly developed case-only method for breast cancer risk overall and by estrogen receptor status. After accounting for multiple testing, we did not find evidence that per-standard deviation PRS313 odds ratio differed across strata defined by individual risk factors. Goodness-of-fit tests did not reject the assumption of a multiplicative model between PRS313 and each risk factor. Variation in projected absolute lifetime risk of breast cancer associated with classical risk factors was greater for women with higher genetic risk (PRS313 and family history) and, on average, 17.5% higher in the highest vs lowest deciles of genetic risk. These findings have implications for risk prevention for women at increased risk of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936056PMC
March 2021

Evaluation of pathogenetic mutations in breast cancer predisposition genes in population-based studies conducted among Chinese women.

Breast Cancer Res Treat 2020 Jun 21;181(2):465-473. Epub 2020 Apr 21.

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.

Purpose: Limited studies have been conducted to evaluate pathogenetic mutations in breast cancer predisposition genes among Chinese women. To fully characterize germline mutations of these genes in this population, we used the whole-exome sequencing data in a population-based case-control study conducted in Shanghai, China.

Methods: We evaluated exonic, splicing, and copy number variants in 11 established and 14 candidate breast cancer predisposition genes in 831 invasive breast cancer cases and 839 controls. We identified 55 pathogenic variants, including 15 newly identified in this study.

Results: Approximately 8% of the cases and 0.6% of the cancer-free controls carried these pathogenetic variants (P = 3.05 × 10). Among cases, 3.7% had a BRCA2 pathogenic variant and 1.6% had a BRCA1 pathogenic variant, while 2.5% had a pathogenic variant in other genes including ATM, CHEK2, NBN, NF1, CDH1, PALB2, PTEN, TP53 as well as BARD1, BRIP, and RAD51D. Patients with BRCA1/2 pathogenic variants were more likely to have a family history of breast cancer and hormone receptor negative tumors compared with patients without pathogenic variants.

Conclusions: This study highlighted the importance of hereditary breast cancer genes in the breast cancer etiology in this understudied population. Together with previous studies in East Asian women, this study suggested a relatively more prominent role of BRCA2 compared to BRCA1. This study also provides additional evidence to design cost-efficient genetic testing among Chinese women for risk assessment and early detection of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-020-05643-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188717PMC
June 2020

Differences in gene-expression profiles in breast cancer between African and European-ancestry women.

Carcinogenesis 2020 07;41(7):887-893

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

African American (AA) women have an excess breast cancer mortality than European American (EA) women. To investigate the contribution of tumor biology to this survival health disparity, we compared gene expression profiles in breast tumors using RNA sequencing data derived from 260 AA and 155 EA women who were prospectively enrolled in the Southern Community Cohort Study (SCCS) and developed breast cancer during follow-up. We identified 59 genes (54 protein-coding genes and 5 long intergenic non-coding RNAs) that were expressed differently between EA and AA at a stringent false discovery rate (FDR) < 0.01. A gene signature was derived with these 59 genes and externally validated using the publicly available Cancer Genome Atlas (TCGA) data from180 AA and 838 EA breast cancer patients. Applying C-statistics, we found that this 59-gene signature has a high discriminative ability in distinguishing AA and EA breast cancer patients in the TCGA dataset (C-index = 0.81). These findings may provide new insight into tumor biological differences and the causes of the survival disparity between AA and EA breast cancer patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgaa035DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359770PMC
July 2020

Reply to Kenyon, "Are Differences in the Oral Microbiome Due to Ancestry or Socioeconomics?"

mSystems 2020 Mar 10;5(2). Epub 2020 Mar 10.

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mSystems.00891-19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065519PMC
March 2020

Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants.

Nat Commun 2020 03 5;11(1):1217. Epub 2020 Mar 5.

Departments of Health Research and Policy, School of Medicine, Stanford University, California, CA, USA.

Known risk variants explain only a small proportion of breast cancer heritability, particularly in Asian women. To search for additional genetic susceptibility loci for breast cancer, here we perform a meta-analysis of data from genome-wide association studies (GWAS) conducted in Asians (24,206 cases and 24,775 controls) and European descendants (122,977 cases and 105,974 controls). We identified 31 potential novel loci with the lead variant showing an association with breast cancer risk at P < 5 × 10. The associations for 10 of these loci were replicated in an independent sample of 16,787 cases and 16,680 controls of Asian women (P < 0.05). In addition, we replicated the associations for 78 of the 166 known risk variants at P < 0.05 in Asians. These findings improve our understanding of breast cancer genetics and etiology and extend previous findings from studies of European descendants to Asian women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-15046-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057957PMC
March 2020

Transcriptome-wide association study of breast cancer risk by estrogen-receptor status.

Genet Epidemiol 2020 07 1;44(5):442-468. Epub 2020 Mar 1.

Department of Radiation Oncology, Hannover Medical School, Hannover, Germany.

Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22288DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987299PMC
July 2020

Mendelian Randomization of Circulating Polyunsaturated Fatty Acids and Colorectal Cancer Risk.

Cancer Epidemiol Biomarkers Prev 2020 04 12;29(4):860-870. Epub 2020 Feb 12.

Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.

Background: Results from epidemiologic studies examining polyunsaturated fatty acids (PUFA) and colorectal cancer risk are inconsistent. Mendelian randomization may strengthen causal inference from observational studies. Given their shared metabolic pathway, examining the combined effects of aspirin/NSAID use with PUFAs could help elucidate an association between PUFAs and colorectal cancer risk.

Methods: Information was leveraged from genome-wide association studies (GWAS) regarding PUFA-associated SNPs to create weighted genetic scores (wGS) representing genetically predicted circulating blood PUFAs for 11,016 non-Hispanic white colorectal cancer cases and 13,732 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Associations per SD increase in the wGS were estimated using unconditional logistic regression. Interactions between PUFA wGSs and aspirin/NSAID use on colorectal cancer risk were also examined.

Results: Modest colorectal cancer risk reductions were observed per SD increase in circulating linoleic acid [OR = 0.96; 95% confidence interval (CI) = 0.93-0.98; = 5.2 × 10] and α-linolenic acid (OR = 0.95; 95% CI = 0.92-0.97; = 5.4 × 10), whereas modest increased risks were observed for arachidonic (OR = 1.06; 95% CI = 1.03-1.08; = 3.3 × 10), eicosapentaenoic (OR = 1.04; 95% CI = 1.01-1.07; = 2.5 × 10), and docosapentaenoic acids (OR = 1.03; 95% CI = 1.01-1.06; = 1.2 × 10). Each of these effects was stronger among aspirin/NSAID nonusers in the stratified analyses.

Conclusions: Our study suggests that higher circulating shorter-chain PUFAs (i.e., LA and ALA) were associated with reduced colorectal cancer risk, whereas longer-chain PUFAs (i.e., AA, EPA, and DPA) were associated with an increased colorectal cancer risk.

Impact: The interaction of PUFAs with aspirin/NSAID use indicates a shared colorectal cancer inflammatory pathway. Future research should continue to improve PUFA genetic instruments to elucidate the independent effects of PUFAs on colorectal cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-19-0891DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125012PMC
April 2020

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.

Nat Genet 2020 01 7;52(1):56-73. Epub 2020 Jan 7.

Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0537-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974400PMC
January 2020