Publications by authors named "Qingfan Liu"

4 Publications

  • Page 1 of 1

Hypertension and Pathogenic hAPP Independently Induce White Matter Astrocytosis and Cognitive Impairment in the Rat.

Front Aging Neurosci 2020 15;12:82. Epub 2020 Apr 15.

Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.

Hypertension is recognized as a risk factor for Alzheimer disease, but the causal link remains undetermined. Although astrocytes and microglia play an important role in maintaining the neurovascular unit, astrocytes and microglia have been understudied in comorbid models of hypertension and Alzheimer disease. In this study, male transgenic Fischer 344 rats (TgAPP21) overexpressing a pathogenic human amyloid precursor protein received 8 weeks of Angiotensin II infusion to increase blood pressure, and the rats were evaluated for astrocytosis, microgliosis, and cognitive function. A linear relationship between astrocytosis and blood pressure was observed in the corpus callosum and cingulum of wildtype rats, with hypertensive wildtype rats matching the elevated baseline astrocytosis seen in normotensive transgenic rats. In contrast, hypertensive transgenic rats did not demonstrate a further increase of astrocytosis, suggesting a deficient response. Angiotensin II infusion did not affect activation of microglia, which were elevated in the white matter and hippocampus of transgenic rats. Angiotensin II infusion did impair both wildtype and transgenic rats' executive functions in the Morris Water Maze. These results present important implications for the interaction between hypertension and pathogenic human amyloid precursor protein expression, as Angiotensin II infusion produced cognitive impairments in both genotypes, but transgenic rats were additionally impaired in developing a normal astrocytic response to elevated blood pressure.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2020

White matter inflammation and cognitive function in a co-morbid metabolic syndrome and prodromal Alzheimer's disease rat model.

J Neuroinflammation 2020 Jan 21;17(1):29. Epub 2020 Jan 21.

Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada.

Background: Metabolic syndrome, the development of which is associated with high-caloric Western diet (HCD) intake, represent a risk factor for mild cognitive impairment (MCI) and dementia including Alzheimer's disease (AD) later in life. This study aimed to investigate the effect of diet-induced metabolic disturbances on white matter neuroinflammation and cognitive function in a transgenic (TG) Fischer 344 rat carrying a human β-amyloid precursor protein (APP) gene with Swedish and Indiana mutations (APP21 TG), a model of pre-AD and MCI.

Methods: TG and wildtype (WT) rats received either a HCD with 40% kJ from fat supplemented with 20% corn syrup drink or a standard diet for 12 weeks. Body weight, caloric intake, and blood pressure were measured repeatedly. End-point changes in glucose and lipid metabolism were also assessed. Open field task was used for assessment of activity; Morris water maze was used to assess spatial learning and memory. Cerebral white matter microglia and astrocytes, hippocampal neurons, and neuronal synapses were examined using immunohistochemistry.

Results: Rats maintained on the HCD developed significant obesity, visceral adiposity, dyslipidemia, and hyperinsulinemia, but did not become hypertensive. Impaired glucose tolerance was observed only in WT rats on the HCD. Total microglia number, activated OX-6+ microglia, as well as GFAP+ astrocytes located predominantly in the white matter were greater in the APP21 TG rat model in comparison to WT rats. HCD-driven metabolic perturbations further exacerbated white matter microgliosis and microglia cell activation in the APP21 TG rats and led to detectable changes in spatial reference memory in the comorbid prodromal AD and metabolic syndrome group compared to WT control rats. Neuronal density in the CA1 subregion of the hippocampus was not different between the experimental groups. Synaptic density in the CA1 and CA3 hippocampal subregions was lower in the TG rats compared to WT rats; however, there was no additional effect of the co-morbidity on this measure.

Conclusions: These results suggest that white matter neuroinflammation might be one of the possible processes of early interaction of metabolic syndrome with MCI and pre-AD and could be one of the early brain pathologies contributing to cognitive deficits observed in mild cognitive impairment and dementia, including AD cases.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2020

APP21 transgenic rats develop age-dependent cognitive impairment and microglia accumulation within white matter tracts.

J Neuroinflammation 2018 Aug 28;15(1):241. Epub 2018 Aug 28.

Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5C1, Canada.

Background: Most of the animal models commonly used for preclinical research into Alzheimer's disease (AD) largely fail to address the pathophysiology, including the impact of known risk factors, of the widely diagnosed sporadic form of the disease. Here, we use a transgenic rat (APP21) that does not develop AD-like pathology spontaneously with age, but does develop pathology following vascular stress. To further the potential of this novel rat model as a much-needed pre-clinical animal model of sporadic AD, we characterize APP21 transgenic rats behaviorally and histologically up to 19 months of age.

Methods: The open field test was used as a measure of activity; and the Morris water maze was used to assess learning, memory, and strategy shift. Neuronal loss and microglia activation were also assessed throughout the brain.

Results: APP21 transgenic rats showed deficits in working memory from an early age, yet memory recall performance after 24 and 72 h was equal to that of wildtype rats and did not deteriorate with age. A deficit in strategy shift was observed at 19 months of age in APP21 transgenic rats compared to Fischer wildtype rats. Histologically, APP21 transgenic rats demonstrated accelerated white matter inflammation compared to wildtype rats, but interestingly no differences in neuron loss were observed.

Conclusions: The combined presence of white matter pathology and executive function deficits mirrored what is often found in patients with mild cognitive impairment or early dementia, and suggests that this rat model will be useful for translationally meaningful studies into the development and prevention of sporadic AD. The presence of widespread white matter inflammation as the only observed pathological correlate for cognitive deficits raises new questions as to the role of neuroinflammation in cognitive decline.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2018

Chloroquine Restores Ganglioside Homeostasis and Improves Pathological and Behavioral Outcomes Post-stroke in the Rat.

Mol Neurobiol 2019 May 25;56(5):3552-3562. Epub 2018 Aug 25.

Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.

Perturbations of ganglioside homeostasis have been observed following stroke whereby toxic simple gangliosides GM2 and GM3 accumulate, while protective complex species GM1 and GD1 are reduced. Thus, there is a need for therapeutic interventions which can prevent ganglioside dysregulation after stroke. A pharmacological intervention using chloroquine was selected for its transient lysosomotropic properties which disrupt the activity of catabolic ganglioside enzymes. Chloroquine was administered both in vitro (0.1 μM), to primary cortical neurons exposed to GM3 toxicity, and in vivo (45 mg/kg i.p.), to 3-month-old male Wistar rats that underwent a severe stroke injury. Chloroquine was administered for seven consecutive days beginning 3 days prior to the stroke injury. Gangliosides were examined using MALDI imaging mass spectrometry at 3 and 21 days after the injury, and motor deficits were examined using the ladder task. Chloroquine treatment prevented ganglioside dysregulation 3 days post-stroke and partially prevented complex ganglioside depletion 21 days post-stroke. Exogenous GM3 was found to be toxic to primary cortical neurons which was protected by chloroquine treatment. Motor deficits were prevented in the forelimbs of stroke-injured rats with chloroquine treatment and was associated with decreased inflammation, neurodegeneration, and an increase in cell survival at the site of injury. Chloroquine administration prevents ganglioside dysregulation acutely, protects against GM3 toxicity in neurons, and is associated with long-term functional and pathological improvements after stroke in the rat. Therefore, targeting lipid dysregulation using lysosomotropic agents such as chloroquine may represent a novel therapeutic avenue for stroke injuries.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
May 2019