Publications by authors named "Qing-Qi Chen"

6 Publications

  • Page 1 of 1

[email protected] Core-Shell Nanoparticles as a SERS Substrate for Volatile Organic Compound Gas Detection.

Anal Chem 2021 May 4;93(19):7188-7195. Epub 2021 May 4.

MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China.

Surface-enhanced Raman spectroscopy (SERS) is a promising ultrasensitive analysis technology due to outstanding molecular fingerprint identification. However, the measured molecules generally need to be adsorbed on a SERS substrate, which makes it difficult to detect weakly adsorbed molecules, for example, the volatile organic compound (VOC) molecules. Herein, we developed a kind of a SERS detection method for weak adsorption molecules with [email protected] core-shell nanoparticles (NPs). The well-uniformed single- and multicore-shell NPs can be synthesized controllably, and the shell thickness of the ZIF-8 was able to be precisely controlled (from 3 to 50 nm) to adjust the distance and electromagnetic fields between metal nanoparticles. After analyzing the chemical and physical characterization, [email protected] core-shell NPs were employed to detect VOC gas by SERS. In contrast with multicore or thicker-shell nanoparticles, [email protected] with a shell thickness of 3 nm could efficiently probe various VOC gas molecules, such as toluene, ethylbenzene, and chlorobenzene. Besides, we were capable of observing the process of toluene gas adsorption and desorption using real-time SERS technology. As observed from the experimental results, this core-shell nanostructure has a promising prospect in diverse gas detection and is expected to be applied to the specific identification of intermediates in catalytic reactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c05432DOI Listing
May 2021

In Situ Surface-Enhanced Raman Spectroscopy Characterization of Electrocatalysis with Different Nanostructures.

Annu Rev Phys Chem 2021 Apr 20;72:331-351. Epub 2021 Jan 20.

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; email:

As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-physchem-090519-034645DOI Listing
April 2021

Molecular Insight of the Critical Role of Ni in Pt-Based Nanocatalysts for Improving the Oxygen Reduction Reaction Probed Using an SERS Borrowing Strategy.

J Am Chem Soc 2021 Jan 15;143(3):1318-1322. Epub 2021 Jan 15.

College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Xiamen University, Xiamen 361005, China.

PtNi alloy catalysts have excellent catalytic activity and are considered some of the most promising electrocatalysts capable of replacing pure Pt for the oxygen reduction reaction (ORR). For PtNi alloys, Ni-doping can improve performance by changing the electronic and structural properties of the catalyst surface and its interaction with reaction intermediates. However, to date there is no direct spectral evidence detecting or identifying the effect of Ni on the ORR in PtNi alloy catalysts. Herein, we introduce a surface-enhanced Raman spectroscopic (SERS) "borrowing" strategy for investigating ORR processes catalyzed by [email protected] nanoparticles (NPs). The bond vibration of adsorbed peroxide intermediate species (*OOH) was obtained, and the effect of Ni on the interaction between surface Pt and *OOH was studied by varying the Ni content in the alloy. The frequency of the *OOH spectral band has an obvious red-shift with increasing Ni content. Combined with density functional theory (DFT) calculations, we show that Ni-doping can optimize *OOH surface binding on the Pt surface, achieving more efficient electron transfer, thus improving the ORR rate. Notably, these results evidence the SERS borrowing strategy as an effective technique for observations of catalytic processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c12755DOI Listing
January 2021

Shell-Isolated Nanoparticle-Enhanced Luminescence of Metallic Nanoclusters.

Anal Chem 2020 05 28;92(10):7146-7153. Epub 2020 Apr 28.

College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Energy, Department of Physics, Xiamen University, Xiamen 361005, China.

Metallic nanoclusters (NCs) have molecular-like structures and unique physical and chemical properties, making them an interesting new class of luminescent nanomaterials with various applications in chemical sensing, bioimaging, optoelectronics, light-emitting diodes (LEDs), etc. However, weak photoluminescence (PL) limits the practical applications of NCs. Herein, an effective and facile strategy of enhancing the PL of NCs was developed using Ag shell-isolated nanoparticle (Ag SHIN)-enhanced luminescence platforms with tuned SHINs shell thicknesses. 3D-FDTD theoretical calculations along with femtosecond transient absorption and fluorescence decay measurements were performed to elucidate the enhancement mechanisms. Maximum enhancements of up to 231-fold for the [AuAg(C≡CBu)] cluster and 126-fold for DNA-templated Ag NCs (DNA-Ag NCs) were achieved. We evidenced a novel and versatile method of achieving large PL enhancements with NCs with potential for practical biosensing applications for identifying target DNA in ultrasensitive surface analysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c00600DOI Listing
May 2020

Background-Free Quantitative Surface Enhanced Raman Spectroscopy Analysis Using Core-Shell Nanoparticles with an Inherent Internal Standard.

Anal Chem 2019 Nov 14. Epub 2019 Nov 14.

College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Energy, College of Materials , Xiamen University , Xiamen 361005 , China.

Surface enhanced Raman spectroscopy (SERS) is an ultrasensitive label-free analytical technique that can provide unique chemical and structural fingerprint information. However, gaining reliable quantitative analysis with SERS remains a huge challenge because of poor reproducibility and the instability of nanostructured SERS active surfaces. Herein, an effective strategy of coating Au nanoparticles (NPs) with ultrathin and uniform Prussian blue (PB) shell ([email protected] NPs) was developed for quantitative detection of dopamine (DA) concentrations in blood serum and crystal violet (CV) contaminants in lake water. The only intense PB Raman signal at 2155 cm served as an ideal and interference-free internal standard (IS) for correcting fluctuations in the Raman intensities of analytes. Also, the stability of [email protected] NPs was investigated, exhibiting good functionality in strong acid solutions and thermal stability at 100 °C. This work demonstrates a convenient and fast quantitative SERS technique for detecting analyte concentrations in complex systems and has a great number of potential applications for use in analytical chemistry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b03703DOI Listing
November 2019

DNA methylation assay for colorectal carcinoma.

Cancer Biol Med 2017 Feb;14(1):42-49

The Affiliated Hospital of Qingdao University, Qingdao 266003, China.

Colorectal carcinoma (CRC) is a common cause of morbidity and mortality worldwide. Two pathogenic pathways are involved in the development of adenoma to CRC. The first pathway involves characterized by chromosomal instability resulting in the accumulation of mutations. The second pathway is characterized by lesions in. Aberrant DNA methylation in selected gene promoters has emerged as a new epigenetic pathway in CRC development. CRC screening is the most efficient strategy to reduce death. Specific DNA methylation events occur in multistep carcinogenesis. Epigenetic gene silencing is a causative factor of CRC development. DNA methylations have been extensively examined in stool from CRC and precursor lesions. Many methylated genes have been described in CRC and adenoma, although no definite DNA methylation biomarkers panel has been established. Multiple DNA methylation biomarkers, including secreted frizzled-related protein 2, secreted frizzled-related protein 1, tissue factor pathway inhibitor 2, vimentin, and methylguanine DNA methyltransferase, have been further investigated, and observations have revealed that DNA methylation biomarkers exhibit with high sensitivity and specificity. These markers may also be used to diagnose CRC and adenoma in early stages. Real time polymerase chain reaction (qPCR) is sensitive, scalable, specific, reliable, time saving, and cost effective. Stool exfoliated markers provide advantages, including sensitivity and specificity. A stool qPCR methylation test may also be an enhanced tool for CRC and adenoma screening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0082DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365180PMC
February 2017