Publications by authors named "Qian Dong Yang"

3 Publications

  • Page 1 of 1

Three-dimensional printed talar prosthesis with biological function for giant cell tumor of the talus: A case report and review of the literature.

World J Clin Cases 2021 May;9(13):3147-3156

Sports Medicine Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China.

Background: Giant cell tumors (GCT) are most commonly seen in the distal femur. These tumors are uncommon in the small bones of the hand and feet, and a very few cases have been reported. A giant cell tumor of the talus is rarely seen clinically and could be a challenge to physicians.

Case Summary: We report a rare case of GCT of the talus in one patient who underwent a new reconstructive surgery technique using a three-dimensional (3D) printing talar prosthesis. The prosthesis shape was designed by tomographic image processing and segmentation using technology to match the intact side by mirror symmetry with 3D post-processing technologies. The patient recovered nearly full range of motion of the ankle after 6 mo. The visual analogue scale and American Orthopaedic Foot and Ankle Society scores were 1 and 89 points, respectively.

Conclusion: We demonstrated that 3D printing of a talar prosthesis is a beneficial option for GCT of the talus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12998/wjcc.v9.i13.3147DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080752PMC
May 2021

Three dimension printing talar prostheses for total replacement in talar necrosis and collapse.

Int Orthop 2021 09 5;45(9):2313-2321. Epub 2021 Mar 5.

The First Affiliated Hospital of Military Medical University of the Army, Chongqing, China.

Background: Reconstructing bone structures and stabilizing adjacent joints are clinical challenges in treating talar necrosis and collapse (TNC). 3D printing technology has been demonstrated to improve the accuracy of talar replacement. This study aimed to evaluate anatomical talar replacement and the clinical results.

Methods: Nine patients with TNC were enrolled between 2016 and 2020. The prosthetic shape and size were designed by CT post-processing and mirror symmetry technology. The clinical outcomes included radiographic parameters of the forefoot, hindfoot, and ankle alignment, ankle activity, recurrent pain, and peri-operative complications.

Results: After a mean follow-up of 23.17 ± 6.65 months, degenerative arthritis and prosthetic dislocation and other complications were not observed on plain radiographs. Each 3D-printed talar prosthesis was placed in the original anatomical position. The parameters which have significant changes pre-operative and post-operative are as follows: talar height, 27.59 ± 5.99 mm and 34.56 ± 3.54 mm (95% CI - 13.05 to - 0.87, t = 2.94, P = 0.032) and Meary's angle, 11.73 ± 4.79° and 4.45 ± 1.82° (95% CI 1.29~22.44, t = 2.89, P = 0.034). The AOFAS hindfoot score improved from 26.33 ± 6.62 to 79.67 ± 3.14 at the final follow-up (95% CI 43.36~63.30, t = 13.75, P = 0.000). The VAS score decreased from 6.33 ± 1.03 to 0.83 ± 0.75 (95% CI 4.40~6.60, t = 12.84, P = 0.000). The post-operative satisfaction scores regarding pain relief, activities of daily living, and return to recreational activities were good to excellent, and the change of activity range was statistically significant.

Conclusions: The 3D printing patient-specific total talar prostheses allowed anatomical reconstruction in TNC. This novel treatment with 3D-printed prostheses could serve as a reliable patient-specific alternative in TNC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00264-021-04992-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494653PMC
September 2021

Differential circRNA expression profiles during the BMP2-induced osteogenic differentiation of MC3T3-E1 cells.

Biomed Pharmacother 2017 Jun 7;90:492-499. Epub 2017 Apr 7.

Southern Medical University, Guangzhou 510515, China; Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China. Electronic address:

Objective: Recent studies have indicated that circular RNAs (circRNAs) might play important roles in various diseases. However, little is known about the functions of circRNAs in the skeletal system, and the role of circRNAs in the mechanism by which bone morphogenetic protein 2 (BMP2) promotes bone differentiation remains unknown. Here, we performed RNA-seq to analyze differential expression of circRNA during different osteoblast differentiation stages and investigated the relevant mechanisms.

Materials And Methods: Alkaline phosphatase (ALP) staining and activity were performed to assess osteogenic differentiation in MC3T3-E1 cells. The expression of osteogenic markers in MC3T3-E1 cells and the differential expression levels of circRNAs were measured and validated by qRT-PCR. Osteogenic marker proteins were measured by western blot. RNA-seq was performed to detect differential expression of circRNAs during the osteogenic differentiation of MC3T3-E1 cells induced by BMP2. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and PANTHER pathway analyses were performed to predict the functions of differentially expressed circRNAs and potentially co-expressed target genes. The microRNA (miRNA) targets of the circRNAs and circRNA-miRNA interactions were predicted by miRanda. The circRNA-miRNA co-expression network was constructed based on the correlation analysis between the differentially expressed circRNAs and miRNAs. A graph of the circRNA-miRNA network was created using Cytoscape 3.01.

Results: The Cell Counting Kit 8 (CCK-8) assay showed that BMP2 promoted the proliferation of osteoblasts in vitro. Both the intracellular ALP content and activity were increased in BMP2-treated MC3T3-E1 cells. In addition, the mRNA and protein levels of the osteoblastic markers ALP, Sp7 transcription factor (SP7) and runt-related transcription factor 2 (RUNX2) were substantially up-regulated. In the present study, 158 circRNAs were differentially expressed by a fold-change ≥2.0, P<0.05 and false discovery rate <0.05. Among these, 74 circRNAs were up-regulated, while 84 circRNAs were down-regulated. In addition, the expression levels of circRNA.5846, circRNA.19142 and circRNA.10042 were significantly increased in the BMP2 group. Furthermore, by analyzing the target mRNAs of miR-7067-5p using GO and PANTHER pathway analyses, circ19142 and circ5846 were found to be not only strongly associated with the biological process of the positive regulation of developmental processes but also related to the fibroblast growth factor, epidermal growth factor, platelet-derived growth factor and Wnt signaling pathways, which are involved in cell growth and differentiation.

Conclusion: The present study identified circ19142 and circ5846 as being associated with osteoblast differentiation and BMP2 may induce osteogenic differentiation through a circ19142/circ5846-targeted miRNA-mRNA axis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2017.03.051DOI Listing
June 2017
-->