Publications by authors named "Praveen Surendran"

49 Publications

Multidisciplinary, early mobility approach to enhance functional independence in patients admitted to a cardiothoracic intensive care unit: a quality improvement programme.

BMJ Open Qual 2021 Sep;10(3)

Cardiac Rehabilitation Department, Heart Hospital, Hamad Medical Corporation, Doha, Qatar.

Early mobilisation following cardiac surgery is vital for improved patient outcomes, as it has a positive effect on a patient's physical and psychological recovery following surgery. We observed that patients admitted to the cardiothoracic intensive care unit (CTICU) following cardiac surgery had only bed exercises and were confined to bed until the chest tubes were removed, which may have delayed patients achieving functional independence. Therefore, the CTICU team implemented a quality improvement (QI) project aimed at the early mobilisation of patients after cardiac surgery.A retrospective analysis was undertaken to define the current mobilisation practices in the CTICU. The multidisciplinary team identified various practice gaps and tested several changes that led to the implementation of a successful early mobility programme. The tests were carried out and reported using rapid cycle changes. A model for improvement methodology was used to run the project. The outcomes of the project were analysed using standard 'run chart rules' to detect changes in outcomes over time and Welch's t-test to assess the significance of these outcomes.This project was implemented in 2015. Patient compliance with early activity and mobilisation gradually reached 95% in 2016 and was sustained over the next 3 years. After the programme was implemented, the mean hours required for initiating out-of-bed-mobilisation was reduced from 22.77 hours to 11.74 hours. Similarly, functional independence measures and intensive care unit mobility scores also showed a statistically significant (p<0.005) improvement in patient transfers out of the CTICU.Implementing an early mobility programme for post-cardiac surgery patients is both safe and feasible. This QI project allowed for early activity and mobilisation, a substantial reduction in the number of hours required for initiating out-of-bed mobilisation following cardiac surgery, and facilitated the achievement of early ambulation and functional milestones in our patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmjoq-2020-001256DOI Listing
September 2021

Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program.

Am J Hum Genet 2021 05 21;108(5):874-893. Epub 2021 Apr 21.

Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.

Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206199PMC
May 2021

Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19.

Nat Med 2021 04 9;27(4):668-676. Epub 2021 Apr 9.

Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA.

Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2, P = 1.6 × 10; IFNAR2, P = 9.8 × 10 and IL-10RB, P = 2.3 × 10) using cis-expression quantitative trait loci genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared expression quantitative trait loci signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01310-zDOI Listing
April 2021

A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis.

Commun Biol 2021 02 3;4(1):156. Epub 2021 Feb 3.

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N = 246,139), total iron binding capacity (N = 135,430), iron (N = 163,511) and transferrin saturation (N = 131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-020-01575-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859200PMC
February 2021

A cross-platform approach identifies genetic regulators of human metabolism and health.

Nat Genet 2021 01 7;53(1):54-64. Epub 2021 Jan 7.

Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.

In cross-platform analyses of 174 metabolites, we identify 499 associations (P < 4.9 × 10) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at GLP2R (p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with β-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00751-5DOI Listing
January 2021

Evidence-based National Consensus: Recommendations for Physiotherapy Management in COVID-19 in Acute Care Indian Setup.

Indian J Crit Care Med 2020 Oct;24(10):905-913

Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.

Background: With the Wuhan pandemic spread to India, more than lakhs of population were affected with COVID-19 with varying severities. Physiotherapists participated as frontline workers to contribute to management of patients in COVID-19 in reducing morbidity of these patients and aiding them to road to recovery. With infrastructure and patient characteristics different from the West and lack of adequate evidence to existing practices, there was a need to formulate a national consensus.

Materials And Methods: Recommendations were formulated with a systematic literature search and feedback of physiotherapist experiences. Expert consensus was obtained using a modified Delphi method.

Results: The intraclass coefficient of agreement between the experts was 0.994, significant at < 0.001.

Conclusion: This document offers physiotherapy evidence-based consensus and recommendation to planning physiotherapy workforce, assessment, chest physiotherapy, early mobilization, preparation for discharge planning, and safety for patients and therapist in acutec are COVID 19 setup of India. The recommendations have been integrated in the algorithm and are intended to use by all physiotherapists and other stakeholders in management of patients with COVID-19 in acute care settings.

How To Cite This Article: Jiandani MP, Agarwal B, Baxi G, Kale S, Pol T, Bhise A, Evidence-based National Consensus: Recommendations for Physiotherapy Management in COVID-19 in Acute Care Indian Setup. Indian J Crit Care Med 2020;24(10):905-913.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5005/jp-journals-10071-23564DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689134PMC
October 2020

Beyond COVID-19: Evidence-Based Consensus Statement on the Role of Physiotherapy in Pulmonary Rehabilitation in the Indian Context.

J Assoc Physicians India 2020 Dec;68(12):82-89

Consultant Chest Physician, Lilavati Hospital and Research Centre, Mumbai, Maharashtra.

Post COVID-19 sequelae includes breathlessness, weakness, fatigue, decreased exercise tolerance and impaired quality of life. Physiotherapy based rehabilitation program is an essential component for post COVID-19 patients in facilitating maximum functional recovery. Expert consensus statements are available from the developed countries. There is a need for a guidelines to manage post COVID-19 sequelae in Indian context. The objective of this consensus statement is to provide evidence informed guidelines for post COVID-19 physiotherapy management as a component of pulmonary rehabilitation. This consensus statement was developed by expert panel across India. Published literatures were appraised and used to prepare the recommendations. This is the first of its kind of work providing preliminary guidelines for post COVID-19 physiotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
December 2020

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.

Nat Genet 2020 12 23;52(12):1314-1332. Epub 2020 Nov 23.

Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00713-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610439PMC
December 2020

Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.

Nat Metab 2020 10 16;2(10):1135-1148. Epub 2020 Oct 16.

SCALLOP consortium.

Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42255-020-00287-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611474PMC
October 2020

The Polygenic and Monogenic Basis of Blood Traits and Diseases.

Cell 2020 09;182(5):1214-1231.e11

Laboratory of Epidemiology and Population Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA.

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.08.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482360PMC
September 2020

Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations.

Cell 2020 09;182(5):1198-1213.e14

Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Division on Aging, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.06.045DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480402PMC
September 2020

PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations.

Bioinformatics 2019 11;35(22):4851-4853

MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK.

Summary: PhenoScanner is a curated database of publicly available results from large-scale genetic association studies in humans. This online tool facilitates 'phenome scans', where genetic variants are cross-referenced for association with many phenotypes of different types. Here we present a major update of PhenoScanner ('PhenoScanner V2'), including over 150 million genetic variants and more than 65 billion associations (compared to 350 million associations in PhenoScanner V1) with diseases and traits, gene expression, metabolite and protein levels, and epigenetic markers. The query options have been extended to include searches by genes, genomic regions and phenotypes, as well as for genetic variants. All variants are positionally annotated using the Variant Effect Predictor and the phenotypes are mapped to Experimental Factor Ontology terms. Linkage disequilibrium statistics from the 1000 Genomes project can be used to search for phenotype associations with proxy variants.

Availability And Implementation: PhenoScanner V2 is available at www.phenoscanner.medschl.cam.ac.uk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btz469DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853652PMC
November 2019

Assessing the causal association of glycine with risk of cardio-metabolic diseases.

Nat Commun 2019 03 5;10(1):1060. Epub 2019 Mar 5.

MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK.

Circulating levels of glycine have previously been associated with lower incidence of coronary heart disease (CHD) and type 2 diabetes (T2D) but it remains uncertain if glycine plays an aetiological role. We present a meta-analysis of genome-wide association studies for glycine in 80,003 participants and investigate the causality and potential mechanisms of the association between glycine and cardio-metabolic diseases using genetic approaches. We identify 27 genetic loci, of which 22 have not previously been reported for glycine. We show that glycine is genetically associated with lower CHD risk and find that this may be partly driven by blood pressure. Evidence for a genetic association of glycine with T2D is weaker, but we find a strong inverse genetic effect of hyperinsulinaemia on glycine. Our findings strengthen evidence for a protective effect of glycine on CHD and show that the glycine-T2D association may be driven by a glycine-lowering effect of insulin resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-08936-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400990PMC
March 2019

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.

Nat Genet 2019 03 18;51(3):452-469. Epub 2019 Feb 18.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0334-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560635PMC
March 2019

Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci.

Mol Psychiatry 2020 10 7;25(10):2392-2409. Epub 2019 Jan 7.

Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0313-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515840PMC
October 2020

Trans-ethnic association study of blood pressure determinants in over 750,000 individuals.

Nat Genet 2019 01 21;51(1):51-62. Epub 2018 Dec 21.

MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK.

In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0303-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365102PMC
January 2019

Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.

Nat Genet 2018 10 17;50(10):1412-1425. Epub 2018 Sep 17.

Laboratory of Genetics and Genomics, NIA/NIH, Baltimore, MD, USA.

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0205-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284793PMC
October 2018

Association of LPA Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies: A Mendelian Randomization Analysis.

JAMA Cardiol 2018 07;3(7):619-627

MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.

Importance: Human genetic studies have indicated that plasma lipoprotein(a) (Lp[a]) is causally associated with the risk of coronary heart disease (CHD), but randomized trials of several therapies that reduce Lp(a) levels by 25% to 35% have not provided any evidence that lowering Lp(a) level reduces CHD risk.

Objective: To estimate the magnitude of the change in plasma Lp(a) levels needed to have the same evidence of an association with CHD risk as a 38.67-mg/dL (ie, 1-mmol/L) change in low-density lipoprotein cholesterol (LDL-C) level, a change that has been shown to produce a clinically meaningful reduction in the risk of CHD.

Design, Setting, And Participants: A mendelian randomization analysis was conducted using individual participant data from 5 studies and with external validation using summarized data from 48 studies. Population-based prospective cohort and case-control studies featured 20 793 individuals with CHD and 27 540 controls with individual participant data, whereas summarized data included 62 240 patients with CHD and 127 299 controls. Data were analyzed from November 2016 to March 2018.

Exposures: Genetic LPA score and plasma Lp(a) mass concentration.

Main Outcomes And Measures: Coronary heart disease.

Results: Of the included study participants, 53% were men, all were of white European ancestry, and the mean age was 57.5 years. The association of genetically predicted Lp(a) with CHD risk was linearly proportional to the absolute change in Lp(a) concentration. A 10-mg/dL lower genetically predicted Lp(a) concentration was associated with a 5.8% lower CHD risk (odds ratio [OR], 0.942; 95% CI, 0.933-0.951; P = 3 × 10-37), whereas a 10-mg/dL lower genetically predicted LDL-C level estimated using an LDL-C genetic score was associated with a 14.5% lower CHD risk (OR, 0.855; 95% CI, 0.818-0.893; P = 2 × 10-12). Thus, a 101.5-mg/dL change (95% CI, 71.0-137.0) in Lp(a) concentration had the same association with CHD risk as a 38.67-mg/dL change in LDL-C level. The association of genetically predicted Lp(a) concentration with CHD risk appeared to be independent of changes in LDL-C level owing to genetic variants that mimic the relationship of statins, PCSK9 inhibitors, and ezetimibe with CHD risk.

Conclusions And Relevance: The clinical benefit of lowering Lp(a) is likely to be proportional to the absolute reduction in Lp(a) concentration. Large absolute reductions in Lp(a) of approximately 100 mg/dL may be required to produce a clinically meaningful reduction in the risk of CHD similar in magnitude to what can be achieved by lowering LDL-C level by 38.67 mg/dL (ie, 1 mmol/L).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamacardio.2018.1470DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481553PMC
July 2018

Genomic atlas of the human plasma proteome.

Nature 2018 06 6;558(7708):73-79. Epub 2018 Jun 6.

MRL, Merck & Co., Inc., Kenilworth, NJ, USA.

Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0175-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697541PMC
June 2018

Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

Nat Genet 2018 04 9;50(4):559-571. Epub 2018 Apr 9.

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0084-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898373PMC
April 2018

Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 05;50(5):766-767

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0082-3DOI Listing
May 2018

Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 01 22;50(1):26-41. Epub 2017 Dec 22.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-017-0011-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945951PMC
January 2018

Genetic variants in PPARGC1B and CNTN4 are associated with thromboxane A formation and with cardiovascular event free survival in the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT).

Atherosclerosis 2018 02 8;269:42-49. Epub 2017 Dec 8.

Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, RCSI, Dublin, Ireland.

Background And Aims: Elevated urinary 11-dehydro thromboxane B (TxB), a measure of thromboxane A formation in vivo, predicts future atherothrombotic events. To further understand this relationship, the genetic determinants of 11-dehydro TxB and their associations with cardiovascular morbidity were investigated in this study.

Methods: Genome-wide and targeted genetic association studies of urinary 11-dehydro TxB were conducted in 806 Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) participants.

Results: The strongest associations were in PPARGC1B (rs4235745, rs32582, rs10515638) and CNTN4 (rs10510230, rs4684343), these 5 single nucleotide polymorphisms (SNPs) were independently associated with 11-dehydro TxB formation. Haplotypes of 11-dehydro TxB increasing alleles for both PPARGC1B and CNTN4 were significantly associated with 11-dehydro TxB, explaining 5.2% and 4.5% of the variation in the whole cohort, and 8.8% and 7.9% in participants not taking aspirin, respectively. In a second ASCOT population (n = 6199), addition of these 5 SNPs significantly improved the covariate-only Cox proportional hazards model for cardiovascular events (chisq = 14.7, p=0.01). Two of the risk alleles associated with increased urinary 11-dehydro TxB were individually associated with greater incidences of cardiovascular events - rs10515638 (HR = 1.31, p=0.01) and rs10510230 (HR = 1.25, p=0.007); effect sizes were larger in those not taking aspirin.

Conclusions: PPARGC1B and CNTN4 genotypes are associated with elevated thromboxane A formation and with an excess of cardiovascular events. Aspirin appears to blunt these associations. If specific protection of PPARGC1B and CNTN4 variant carriers by aspirin is confirmed by additional studies, PPARGC1B and CNTN4 genotyping could potentially assist in clinical decision making regarding the use of aspirin in primary prevention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2017.12.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813793PMC
February 2018

Exome-wide association study of plasma lipids in >300,000 individuals.

Nat Genet 2017 Dec 30;49(12):1758-1766. Epub 2017 Oct 30.

Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3977DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709146PMC
December 2017

New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 Individuals.

Circ Cardiovasc Genet 2017 Oct;10(5)

Background: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.

Methods And Results: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (<5×10) for BP, of which 4 are new BP loci: rs9678851 (missense, ), rs7437940 (), rs13303 (missense, ), and rs1055144 (). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, ) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at ) was genome-wide significant.

Conclusions: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGENETICS.117.001778DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776077PMC
October 2017
-->