Publications by authors named "Pramod Mallikarjuna"

3 Publications

  • Page 1 of 1

Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma.

Cell Cycle 2019 09 24;18(17):2141-2156. Epub 2019 Jul 24.

a Department of Medical Biosciences, Pathology , Umeå , Sweden.

To investigate the significance of expression of HIF-1α, HIF-2α, and SNAIL1 proteins; and TGF-β signaling pathway proteins in ccRCC, their relation with clinicopathological parameters and patient's survival were examined. We also investigated potential crosstalk between HIF-α and TGF-β signaling pathway, including the TGF-β type 1 receptor (ALK5-FL) and the intracellular domain of ALK5 (ALK5-ICD). Tissue samples from 154 ccRCC patients and comparable adjacent kidney cortex samples from 38 patients were analyzed for HIF-1α/2α, TGF-β signaling components, and SNAIL1 proteins by immunoblot. Protein expression of HIF-1α and HIF-2α were significantly higher, while SNAIL1 had similar expression levels in ccRCC compared with the kidney cortex. HIF-2α associated with poor cancer-specific survival, while HIF-1α and SNAIL1 did not associate with survival. Moreover, HIF-2α positively correlated with ALK5-ICD, pSMAD2/3, and PAI-1; HIF-1α positively correlated with pSMAD2/3; SNAIL1 positively correlated with ALK5-FL, ALK5-ICD, pSMAD2/3, PAI-1, and HIF-2α. Intriguingly, experiments performed under normoxic conditions revealed that ALK5 interacts with HIF-1α and HIF-2α, and promotes their expression and the expression of their target genes GLUT1 and CA9, in a VHL dependent manner. We found that ALK5 induces expression of HIF-1α and HIF-2α, through its kinase activity. Under hypoxic conditions, HIF-α proteins correlated with the activated TGF-β signaling pathway. In conclusion, we reveal that ALK5 plays a pivotal role in synergistic crosstalk between TGF-β signaling and hypoxia pathway, and that the interaction between ALK5 and HIF-α contributes to tumor progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15384101.2019.1642069DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986558PMC
September 2019

VHL status regulates transforming growth factor-β signaling pathways in renal cell carcinoma.

Oncotarget 2018 Mar 27;9(23):16297-16310. Epub 2018 Mar 27.

Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå SE-90187, Sweden.

To evaluate the role of pVHL in the regulation of TGF-β signaling pathways in clear cell renal cell carcinoma (ccRCC) as well as in non-ccRCC; the expression of pVHL, and the TGF-β pathway components and their association with clinicopathological parameters and patient's survival were explored. Tissue samples from 143 ccRCC and 58 non-ccRCC patients were examined by immunoblot. ccRCC cell lines were utilized for mechanistic studies. Expression levels of pVHL were significantly lower in ccRCC compared with non-ccRCC. Non-ccRCC and ccRCC pVHL-High expressed similar levels of pVHL. Expression of the TGF-β type I receptor (ALK5) and intra-cellular domain were significantly higher in ccRCC compared with non-ccRCC. In non-ccRCC, expressions of ALK5-FL, ALK5-ICD, pSMAD2/3, and PAI-1 had no association with clinicopathological parameters and survival. In ccRCC pVHL-Low, ALK5-FL, ALK5-ICD, pSMAD2/3, and PAI-1 were significantly related with tumor stage, size, and survival. In ccRCC pVHL-High, the expression of PAI-1 was associated with stage and survival. studies revealed that pVHL interacted with ALK5 to downregulate its expression through K48-linked poly-ubiquitination and proteasomal degradation, thus negatively controlling TGF-β induced cancer cell invasiveness. The pVHL status controls the ALK5 and can thereby regulate the TGF-β pathway, aggressiveness of tumors, and survival of the ccRCC and non-ccRCC patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.24631DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893241PMC
March 2018

Transforming growth factor-β promotes aggressiveness and invasion of clear cell renal cell carcinoma.

Oncotarget 2016 Jun;7(24):35917-35931

Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden.

The molecular mechanisms whereby transforming growth factor-β (TGF-β) promotes clear cell renal cell carcinoma (ccRCC) progression is elusive. The cell membrane bound TGF-β type I receptor (ALK5), was recently found to undergo proteolytic cleavage in aggressive prostate cancer cells, resulting in liberation and subsequent nuclear translocation of its intracellular domain (ICD), suggesting that ALK5-ICD might be a useful cancer biomarker. Herein, the possible correlation between ALK5 full length (ALK5-FL) and ALK5-ICD protein, phosphorylated Smad2/3 (pSmad2/3), and expression of TGF-β target gene PAI-1, was investigated in a clinical ccRCC material, in relation to tumor grade, stage, size and cancer specific survival. Expression of ALK5-FL, ALK5-ICD, pSmad2/3 and PAI-1 protein levels were significantly higher in higher stage and associated with adverse survival. ALK5-ICD, pSmad2/3 and PAI-1 correlated with higher grade, and ALK5-FL, pSmad2/3 and PAI-1 protein levels were significantly correlated with larger tumor size. Moreover, the functional role of the TGF-β - ALK5-ICD pathway were investigated in two ccRCC cell lines by treatment with ADAM/MMP2 inhibitor TAPI-2, which prevented TGF-β-induced ALK5-ICD generation, nuclear translocation, as well as cell invasion. The present study demonstrated that canonical TGF-β Smad2/3 pathway and generation of ALK5-ICD correlates with poor survival and invasion of ccRCC in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.9177DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094972PMC
June 2016