Publications by authors named "Pilar Puerto-Camacho"

3 Publications

  • Page 1 of 1

Endoglin in the Spotlight to Treat Cancer.

Int J Mol Sci 2021 Mar 20;22(6). Epub 2021 Mar 20.

Molecular Pathology of Sarcomas, Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain.

A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22063186DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003971PMC
March 2021

Hippo pathway effectors YAP1/TAZ induce an EWS-FLI1-opposing gene signature and associate with disease progression in Ewing sarcoma.

J Pathol 2020 04 4;250(4):374-386. Epub 2020 Feb 4.

Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Seville, Spain.

YAP1 and TAZ (WWTR1) oncoproteins are the final transducers of the Hippo tumor suppressor pathway. Deregulation of the pathway leads to YAP1/TAZ activation fostering tumorigenesis in multiple malignant tumor types, including sarcoma. However, oncogenic mutations within the core components of the Hippo pathway are uncommon. Ewing sarcoma (EwS), a pediatric cancer with low mutation rate, is characterized by a canonical fusion involving the gene EWSR1 and FLI1 as the most common partner. The fusion protein is a potent driver of oncogenesis, but secondary alterations are scarce, and little is known about other biological factors that determine the risk of relapse or progression. We have observed YAP1/TAZ expression and transcriptional activity in EwS cell lines. Analyses of 55 primary human EwS samples revealed that high YAP1/TAZ expression was associated with progression of the disease and predicted poorer outcome. We did not observe recurrent SNV or copy number gains/losses in Hippo pathway-related loci. However, differential CpG methylation of the RASSF1 locus (a regulator of the Hippo pathway) was observed in EwS cell lines compared with mesenchymal stem cells, the putative cell of origin of EwS. Hypermethylation of RASSF1 correlated with the transcriptional silencing of the tumor suppressor isoform RASFF1A, and transcriptional activation of the pro-tumorigenic isoform RASSF1C, which promotes YAP1/TAZ activation. Knockdown of YAP1/TAZ decreased proliferation and invasion abilities of EwS cells and revealed that YAP1/TAZ transcription activity is inversely correlated with the EWS-FLI1 transcriptional signature. This transcriptional antagonism could be explained partly by EWS-FLI1-mediated transcriptional repression of TAZ. Thus, YAP1/TAZ may override the transcriptional program induced by the fusion protein, contributing to the phenotypic plasticity determined by dynamic fluctuation of the fusion protein, a recently proposed model for disease dissemination in EwS. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.5379DOI Listing
April 2020

Preclinical Efficacy of Endoglin-Targeting Antibody-Drug Conjugates for the Treatment of Ewing Sarcoma.

Clin Cancer Res 2019 04 12;25(7):2228-2240. Epub 2018 Nov 12.

Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain.

Purpose: Endoglin (ENG; CD105) is a coreceptor of the TGFβ family that is highly expressed in proliferating endothelial cells. Often coopted by cancer cells, ENG can lead to neo-angiogenesis and vasculogenic mimicry in aggressive malignancies. It exists both as a transmembrane cell surface protein, where it primarily interacts with TGFβ, and as a soluble matricellular protein (sENG) when cleaved by matrix metalloproteinase 14 (MMP14). High ENG expression has been associated with poor prognosis in Ewing sarcoma, an aggressive bone cancer that primarily occurs in adolescents and young adults. However, the therapeutic value of ENG targeting has not been fully explored in this disease.

Experimental Design: We characterized the expression pattern of transmembrane ENG, sENG, and MMP14 in preclinical and clinical samples. Subsequently, the antineoplastic potential of two novel ENG-targeting monoclonal antibody-drug conjugates (ADC), OMTX503 and OMTX703, which differed only by their drug payload (nigrin-b A chain and cytolysin, respectively), was assessed in cell lines and preclinical animal models of Ewing sarcoma.

Results: Both ADCs suppressed cell proliferation in proportion to the endogenous levels of ENG observed . Moreover, the ADCs significantly delayed tumor growth in Ewing sarcoma cell line-derived xenografts and patient-derived xenografts in a dose-dependent manner.

Conclusions: Taken together, these studies demonstrate potent preclinical activity of first-in-class anti-ENG ADCs as a nascent strategy to eradicate Ewing sarcoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-18-0936DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445738PMC
April 2019