Publications by authors named "Pietro Antonio Bernabei"

3 Publications

  • Page 1 of 1

VEGFR-1 (FLT-1), beta1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome.

Blood 2007 Aug 9;110(4):1238-50. Epub 2007 Apr 9.

Department of Experimental Pathology and Oncology, University of Firenze, Firenze, Italy.

Leukemia cell motility and transendothelial migration into extramedullary sites are regulated by angiogenic factors and are considered unfavorable prognostic factors in acute leukemias. We have studied cross talk among (1) the vascular endothelial growth factor receptor-1, FLT-1; (2) the human eag-related gene 1 (hERG1) K(+) channels; and (3) integrin receptors in acute myeloid leukemia (AML) cells. FLT-1, hERG1, and the beta(1) integrin were found to form a macromolecular signaling complex. The latter mostly recruited the hERG1B isoform of hERG1 channels, and its assembly was necessary for FLT-1 signaling activation and AML cell migration. Both effects were inhibited when hERG1 channels were specifically blocked. A FLT-1/hERG1/beta(1) complex was also observed in primary AML blasts, obtained from a population of human patients. The co-expression of FLT-1 and hERG1 conferred a pro-migratory phenotype to AML blasts. Such a phenotype was also observed in vivo. The hERG1-positive blasts were more efficient in invading the peripheral circulation and the extramedullary sites after engraftment into immunodeficient mice. Moreover, hERG1 expression in leukemia patients correlated with a higher probability of relapse and shorter survival periods. We conclude that in AML, hERG1 channels mediate the FLT-1-dependent cell migration and invasion, and hence confer a greater malignancy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2006-02-003772DOI Listing
August 2007

Modeled gravitational unloading triggers differentiation and apoptosis in preosteoclastic cells.

J Cell Biochem 2006 May;98(1):65-80

CEO--Center of Excellence in Optronics, L. Enrico Fermi 6, I-50125 Florence, Italy.

Gravity acts permanently on organisms as either static or dynamic stimulation. Understanding the influence of gravitational and mechanical stimuli on biological systems is an intriguing scientific problem. More than two decades of life science studies in low g, either real or modeled by clinostats, as well as experimentation with devices simulating different types of controlled mechanical stimuli, have shown that important biological functions are altered at the single cell level. Here, we show that the human leukemic line FLG 29.1, characterized as an osteoclastic precursor model, is directly sensitive to gravitational unloading, modeled by a random positioning machine (RPM). The phenotypic expression of cytoskeletal proteins, osteoclastic markers, and factors regulating apoptosis was investigated using histochemical and immunohistochemical methods, while the expression of the corresponding genes was analyzed using RT-PCR. A quantitative bone resorption assay was performed. Autofluorescence spectroscopy and imaging were applied to gain information on cell metabolism. The results show that modeled hypogravity may trigger both differentiation and apoptosis in FLG 29.1 cells. Indeed, when comparing RPM versus 1 x g cultures, in the former we found cytoskeletal alterations and a marked increase in apoptosis, but the surviving cells showed an osteoclastic-like morphology, overexpression of osteoclastic markers and the ability to resorb bone. In particular, the overexpression of both RANK and its ligand RANKL, maintained even after return to 1 x g conditions, is consistent with the firing of a differentiation process via a paracrine/autocrine mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.20747DOI Listing
May 2006

Dependence of leukemic cell autofluorescence patterns on the degree of differentiation.

Photochem Photobiol Sci 2003 Oct;2(10):981-7

Centre of Excellence in Optronics, Largo Enrico Fermi, 6, 50125 Florence, Italy.

The characterisation of leukemic cell autofluorescence during differentiation, induced by 12-O-tetradecanoylphorbol 13-acetate and all-trans retinoic acid, was performed by autofluorescence microspectroscopy and multispectral imaging autofluorescence microscopy. We have found that a dependence exists between the cell autofluorescence pattern and the degree of cell differentiation. When cells differentiate, their autofluorescence emission changes, following the morphological and functional rearrangement of cell structures. A decrease in emission intensity and a different distribution of endogenous fluorophores are observed. Thus, autofluorescence monitoring on living cells is a potentially useful tool for in vitro study of the differentiation processes. Furthermore, different maturation steps can be distinguished on the basis of the cell fluorescence pattern, leading the way to future application of the technique in diagnostics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/b306276gDOI Listing
October 2003