Publications by authors named "Pier Paolo Marrese"

3 Publications

  • Page 1 of 1

Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound.

Food Chem 2016 Dec 5;213:545-553. Epub 2016 Jul 5.

Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy.

A study was carried out to produce functional pasta by adding bran aqueous extract (BW) and bran oleoresin (BO) obtained using ultrasound and supercritical CO2, respectively, or a powdery lyophilized tomato matrix (LT). The bioactive compounds, hydrophilic and lipophilic antioxidant activity (HAA and LAA) in vitro, were evaluated. BW supplementation did not improve antioxidant activity, whilst LT pasta showed unconventional taste and odor. BO pasta had good levels of tocochromanols (2551μg/100g pasta f.w.) and carotenoids (40.2μg/100g pasta f.w.), and the highest HAA and LAA. The oleoresin altered starch swelling and gluten network, as evidenced by scanning electron microscopy, therefore BO pasta had structural characteristics poor compared with the control (4.8% vs. 3.2% cooking loss), although this difference did not affect significantly overall sensory judgment (74 vs. 79 for BO and control, respectively). BO supplementation was most effective for increasing antioxidant activity without jeopardizing pasta quality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.07.006DOI Listing
December 2016

Α-Cyclodextrin encapsulation of supercritical CO₂ extracted oleoresins from different plant matrices: A stability study.

Food Chem 2016 May 18;199:684-93. Epub 2015 Dec 18.

Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.

Here we describe the encapsulation in α-cyclodextrins (α-CDs) of wheat bran, pumpkin and tomato oleoresins, extracted by supercritical carbon dioxide, to obtain freeze-dried powders useful as ready-to-mix ingredients for novel functional food formulation. The stability of tocochromanols, carotenoids and fatty acids in the oleoresin/α-CD complexes, compared to the corresponding free oleoresins, was also monitored over time in different combinations of storage conditions. Regardless of light, storage at 25°C of free oleoresins determined a rapid decrease in carotenoids, tocochromanols and PUFAs. α-CD encapsulation improved the stability of most bioactive compounds. Storage at 4°C synergized with encapsulation in preventing degradation of bioactives. Unlike all other antioxidants, lycopene in tomato oleoresin/α-CD complex resulted to be more susceptible to oxidation than in free oleoresin, likely due to its selective sequestration from the interaction with other lipophilic molecules of the oleoresin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2015.12.073DOI Listing
May 2016

Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide.

Food Chem 2015 Mar 24;170:193-202. Epub 2014 Aug 24.

Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, via Prov.le Lecce-Monteroni, 73100 Lecce, Italy. Electronic address:

This work reports a novel enzyme-assisted process for lycopene concentration into a freeze-dried tomato matrix and describes the results of laboratory scale lycopene supercritical CO2 (SC-CO2) extractions carried out with untreated (control) and enzyme-digested matrices. The combined use of food-grade commercial plant cell-wall glycosidases (Celluclast/Novozyme plus Viscozyme) allows to increase lycopene (∼153%) and lipid (∼137%) concentration in the matrix and rises substrate load onto the extraction vessel (∼46%) compared to the control. The addition of an oleaginous co-matrix (hazelnut seeds) to the tomato matrix (1:1 by weight) increases CO2 diffusion through the highly dense enzyme-treated matrix bed and provides lipids that are co-extracted increasing lycopene yield. Under the same operative conditions (50 MPa, 86 °C, 4 mL min(-1) SC-CO2 flow) extraction yield from control and Celluclast/Novozyme+Viscozyme-treated tomato matrix/co-matrix mixtures was similar, exceeding 75% after 4.5h of extraction. However, the total extracted lycopene was ∼3 times higher in enzyme-treated matrix than control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.08.081DOI Listing
March 2015
-->