Publications by authors named "Phyllis J Goodman"

138 Publications

Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies.

Am J Clin Nutr 2021 Jul 13. Epub 2021 Jul 13.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.

Background: Epidemiological studies have suggested positive associations for iron and red meat intake with risk of pancreatic ductal adenocarcinoma (PDAC). Inherited pathogenic variants in genes involved in the hepcidin-regulating iron metabolism pathway are known to cause iron overload and hemochromatosis.

Objectives: The objective of this study was to determine whether common genetic variation in the hepcidin-regulating iron metabolism pathway is associated with PDAC.

Methods: We conducted a pathway analysis of the hepcidin-regulating genes using single nucleotide polymorphism (SNP) summary statistics generated from 4 genome-wide association studies in 2 large consortium studies using the summary data-based adaptive rank truncated product method. Our population consisted of 9253 PDAC cases and 12,525 controls of European descent. Our analysis included 11 hepcidin-regulating genes [bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 6 (BMP6), ferritin heavy chain 1 (FTH1), ferritin light chain (FTL), hepcidin (HAMP), homeostatic iron regulator (HFE), hemojuvelin (HJV), nuclear factor erythroid 2-related factor 2 (NRF2), ferroportin 1 (SLC40A1), transferrin receptor 1 (TFR1), and transferrin receptor 2 (TFR2)] and their surrounding genomic regions (±20 kb) for a total of 412 SNPs.

Results: The hepcidin-regulating gene pathway was significantly associated with PDAC (P = 0.002), with the HJV, TFR2, TFR1, BMP6, and HAMP genes contributing the most to the association.

Conclusions: Our results support that genetic susceptibility related to the hepcidin-regulating gene pathway is associated with PDAC risk and suggest a potential role of iron metabolism in pancreatic carcinogenesis. Further studies are needed to evaluate effect modification by intake of iron-rich foods on this association.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqab217DOI Listing
July 2021

Performance of African-ancestry-specific polygenic hazard score varies according to local ancestry in 8q24.

Prostate Cancer Prostatic Dis 2021 Jun 14. Epub 2021 Jun 14.

School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA.

Background: We previously developed an African-ancestry-specific polygenic hazard score (PHS46+African) that substantially improved prostate cancer risk stratification in men with African ancestry. The model consists of 46 SNPs identified in Europeans and 3 SNPs from 8q24 shown to improve model performance in Africans. Herein, we used principal component (PC) analysis to uncover subpopulations of men with African ancestry for whom the utility of PHS46+African may differ.

Materials And Methods: Genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Genetic variation in a window spanning 3 African-specific 8q24 SNPs was estimated using 93 PCs. A Cox proportional hazards framework was used to identify the pair of PCs most strongly associated with the performance of PHS46+African. A calibration factor (CF) was formulated using Cox coefficients to quantify the extent to which the performance of PHS46+African varies with PC.

Results: CF of PHS46+African was strongly associated with the first and twentieth PCs. Predicted CF ranged from 0.41 to 2.94, suggesting that PHS46+African may be up to 7 times more beneficial to some African men than others. The explained relative risk for PHS46+African varied from 3.6% to 9.9% for individuals with low and high CF values, respectively. By cross-referencing our data set with 1000 Genomes, we identified significant associations between continental and calibration groupings.

Conclusion: We identified PCs within 8q24 that were strongly associated with the performance of PHS46+African. Further research to improve the clinical utility of polygenic risk scores (or models) is needed to improve health outcomes for men of African ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41391-021-00403-7DOI Listing
June 2021

Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: a Mendelian randomization study.

Am J Clin Nutr 2021 06;113(6):1490-1502

Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Background: The literature on associations of circulating concentrations of minerals and vitamins with risk of colorectal cancer is limited and inconsistent. Evidence from randomized controlled trials (RCTs) to support the efficacy of dietary modification or nutrient supplementation for colorectal cancer prevention is also limited.

Objectives: To complement observational and RCT findings, we investigated associations of genetically predicted concentrations of 11 micronutrients (β-carotene, calcium, copper, folate, iron, magnesium, phosphorus, selenium, vitamin B-6, vitamin B-12, and zinc) with colorectal cancer risk using Mendelian randomization (MR).

Methods: Two-sample MR was conducted using 58,221 individuals with colorectal cancer and 67,694 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. Inverse variance-weighted MR analyses were performed with sensitivity analyses to assess the impact of potential violations of MR assumptions.

Results: Nominally significant associations were noted for genetically predicted iron concentration and higher risk of colon cancer [ORs per SD (ORSD): 1.08; 95% CI: 1.00, 1.17; P value = 0.05] and similarly for proximal colon cancer, and for vitamin B-12 concentration and higher risk of colorectal cancer (ORSD: 1.12; 95% CI: 1.03, 1.21; P value = 0.01) and similarly for colon cancer. A nominally significant association was also noted for genetically predicted selenium concentration and lower risk of colon cancer (ORSD: 0.98; 95% CI: 0.96, 1.00; P value = 0.05) and similarly for distal colon cancer. These associations were robust to sensitivity analyses. Nominally significant inverse associations were observed for zinc and risk of colorectal and distal colon cancers, but sensitivity analyses could not be performed. None of these findings survived correction for multiple testing. Genetically predicted concentrations of β-carotene, calcium, copper, folate, magnesium, phosphorus, and vitamin B-6 were not associated with disease risk.

Conclusions: These results suggest possible causal associations of circulating iron and vitamin B-12 (positively) and selenium (inversely) with risk of colon cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqab003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168352PMC
June 2021

Genetic architectures of proximal and distal colorectal cancer are partly distinct.

Gut 2021 Jul 25;70(7):1325-1334. Epub 2021 Feb 25.

Cancer Prevention and Control Program, Catalan Institute of Oncology - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.

Objective: An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined.

Design: To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling.

Results: We identified 13 loci that reached genome-wide significance (p<5×10) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer.

Conclusion: Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/gutjnl-2020-321534DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223655PMC
July 2021

Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3.

Cancer Res 2021 Jun 11;81(11):3134-3143. Epub 2021 Feb 11.

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland.

Germline variation and smoking are independently associated with pancreatic ductal adenocarcinoma (PDAC). We conducted genome-wide smoking interaction analysis of PDAC using genotype data from four previous genome-wide association studies in individuals of European ancestry (7,937 cases and 11,774 controls). Examination of expression quantitative trait loci data from the Genotype-Tissue Expression Project followed by colocalization analysis was conducted to determine whether there was support for common SNP(s) underlying the observed associations. Statistical tests were two sided and < 5 × 10 was considered statistically significant. Genome-wide significant evidence of qualitative interaction was identified on chr2q21.3 in intron 5 of the transmembrane protein 163 (TMEM163) and upstream of the cyclin T2 (CCNT2). The most significant SNP using the Empirical Bayes method, in this region that included 45 significantly associated SNPs, was rs1818613 [per allele OR in never smokers 0.87, 95% confidence interval (CI), 0.82-0.93; former smokers 1.00, 95% CI, 0.91-1.07; current smokers 1.25, 95% CI 1.12-1.40, = 3.08 × 10). Examination of the Genotype-Tissue Expression Project data demonstrated an expression quantitative trait locus in this region for TMEM163 and CCNT2 in several tissue types. Colocalization analysis supported a shared SNP, rs842357, in high linkage disequilibrium with rs1818613 ( = 0. 94) driving both the observed interaction and the expression quantitative trait loci signals. Future studies are needed to confirm and understand the differential biologic mechanisms by smoking status that contribute to our PDAC findings. SIGNIFICANCE: This large genome-wide interaction study identifies a susceptibility locus on 2q21.3 that significantly modified PDAC risk by smoking status, providing insight into smoking-associated PDAC, with implications for prevention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-20-3267DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178175PMC
June 2021

A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer.

Genome Med 2021 02 1;13(1):15. Epub 2021 Feb 1.

CIBERONC, Madrid, Spain.

Background: Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance.

Methods: We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D) permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map (3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public genomic information allowed prioritization of potentially relevant candidate variants.

Results: We identified several new variants located in genes for which there is experimental evidence of their implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in NR5A2 (rs3790840) with a meta-analysis p value = 5.91E-06 in 1D approach and a Local Moran's Index (LMI) = 7.76 in 2D approach. We also identified a multi-hit region in CASC8-a lncRNA associated with pancreatic carcinogenesis-with a lowest p value = 6.91E-05. Importantly, two new PC loci were identified both by 2D and 3D approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1-a major regulator of the ER stress and unfolded protein responses in acinar cells-identified by 3D; all of them with a strong in silico functional support.

Conclusions: This multi-step strategy, combined with an in-depth in silico functional analysis, offers a comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-020-00816-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849104PMC
February 2021

Association of Serum Carotenoids and Retinoids with Intraprostatic Inflammation in Men without Prostate Cancer or Clinical Indication for Biopsy in the Placebo Arm of the Prostate Cancer Prevention Trial.

Nutr Cancer 2021 Jan 29:1-8. Epub 2021 Jan 29.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

Non-supplemental carotenoids and retinol may potentiate antioxidant and anti-inflammatory mechanisms. Chronic intraprostatic inflammation is linked to prostate carcinogenesis. We investigated the association of circulating carotenoids and retinol with intraprostatic inflammation in benign tissue. We included 235 men from the Prostate Cancer Prevention Trial placebo arm who had a negative end-of-study biopsy, most (92.8%) done without clinical indication. α-carotene, β-carotene, β-cryptoxanthin, lycopene, and retinol were assessed by high-performance liquid chromatography using pooled year 1 and 4 serum. Presence and extent of intraprostatic inflammation in benign tissue was assessed in 3 (of 6-10) biopsy cores. Logistic (any core with inflammation vs none) and polytomous logistic (some or all cores with inflammation vs none) regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) of intraprostatic inflammation by concentration tertile adjusting for age, race, prostate cancer family history, and serum cholesterol. None of the carotenoids or retinol was associated with intraprostatic inflammation, except β-cryptoxanthin, which appeared to be positively associated with any core with inflammation [vs none, T2: OR (95% CI) = 2.67 (1.19, 5.99); T3: 1.80 (0.84, 3.82), -trend = 0.12]. These findings suggest that common circulating carotenoids and retinol are not useful dietary intervention targets for preventing prostate cancer via modulating intraprostatic inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/01635581.2021.1879879DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319215PMC
January 2021

Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

Nat Genet 2021 01 4;53(1):65-75. Epub 2021 Jan 4.

Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.

Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00748-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148035PMC
January 2021

Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects.

Gastroenterology 2021 03 12;160(4):1164-1178.e6. Epub 2020 Oct 12.

Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.

Background And Aims: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes.

Methods: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted.

Results: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis.

Conclusions: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2020.08.062DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956223PMC
March 2021

Mendelian Randomization Analysis of n-6 Polyunsaturated Fatty Acid Levels and Pancreatic Cancer Risk.

Cancer Epidemiol Biomarkers Prev 2020 12 23;29(12):2735-2739. Epub 2020 Sep 23.

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.

Background: Whether circulating polyunsaturated fatty acid (PUFA) levels are associated with pancreatic cancer risk is uncertain. Mendelian randomization (MR) represents a study design using genetic instruments to better characterize the relationship between exposure and outcome.

Methods: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.

Results: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.

Conclusions: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.

Impact: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-20-0651DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710600PMC
December 2020

African-specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer.

Int J Cancer 2021 01 24;148(1):99-105. Epub 2020 Sep 24.

UMR Inserm 1134 Biologie Intégrée du Globule Rouge, INSERM/Université Paris Diderot-Université Sorbonne Paris Cité/INTS/Université des Antilles, Paris, France.

Polygenic hazard score (PHS) models are associated with age at diagnosis of prostate cancer. Our model developed in Europeans (PHS46) showed reduced performance in men with African genetic ancestry. We used a cross-validated search to identify single nucleotide polymorphisms (SNPs) that might improve performance in this population. Anonymized genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Ten iterations of a 10-fold cross-validation search were conducted to select SNPs that would be included in the final PHS46+African model. The coefficients of PHS46+African were estimated in a Cox proportional hazards framework using age at diagnosis as the dependent variable and PHS46, and selected SNPs as predictors. The performance of PHS46 and PHS46+African was compared using the same cross-validated approach. Three SNPs (rs76229939, rs74421890 and rs5013678) were selected for inclusion in PHS46+African. All three SNPs are located on chromosome 8q24. PHS46+African showed substantial improvements in all performance metrics measured, including a 75% increase in the relative hazard of those in the upper 20% compared to the bottom 20% (2.47-4.34) and a 20% reduction in the relative hazard of those in the bottom 20% compared to the middle 40% (0.65-0.53). In conclusion, we identified three SNPs that substantially improved the association of PHS46 with age at diagnosis of prostate cancer in men with African genetic ancestry to levels comparable to Europeans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.33282DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8135907PMC
January 2021

Age-related macular degeneration in a randomized trial of selenium and vitamin E in men: the Select Eye Endpoints (SEE) study (SWOG S0000B).

Acta Ophthalmol 2021 Mar 23;99(2):e285-e287. Epub 2020 Jul 23.

Department of Urology, Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/aos.14538DOI Listing
March 2021

Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk.

Cancer Res 2020 09 8;80(18):4004-4013. Epub 2020 Jul 8.

Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland.

Registry-based epidemiologic studies suggest associations between chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that the genomic regions surrounding established genome-wide associated variants for these chronic inflammatory diseases are associated with PDAC. We examined the association between PDAC and genomic regions (±500 kb) surrounding established common susceptibility variants for ulcerative colitis, Crohn's disease, inflammatory bowel disease, celiac disease, chronic pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-wide association studies data for 8,384 cases and 11,955 controls of European descent from two large consortium studies using the summary data-based adaptive rank truncated product method to examine the overall association of combined genomic regions for each inflammatory disease group. Combined genomic susceptibility regions for ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at values < 0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10, respectively). After excluding the 20 PDAC susceptibility regions (±500 kb) previously identified by GWAS, the genomic regions for ulcerative colitis, Crohn disease, and inflammatory bowel disease remained associated with PDAC ( = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease ( = 0.22) and primary sclerosing cholangitis ( = 0.078) were not associated with PDAC. Our results support the hypothesis that genomic regions surrounding variants associated with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis are associated with PDAC. SIGNIFICANCE: The joint effects of common variants in genomic regions containing susceptibility loci for inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may provide insights to understanding pancreatic cancer etiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-20-0447DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861352PMC
September 2020

Use of Aspirin and Statins in Relation to Inflammation in Benign Prostate Tissue in the Placebo Arm of the Prostate Cancer Prevention Trial.

Cancer Prev Res (Phila) 2020 10 24;13(10):853-862. Epub 2020 Jun 24.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

Aspirin and statin use may lower the risk of advanced/fatal prostate cancer, possibly by reducing intraprostatic inflammation. To test this hypothesis, we investigated the association of aspirin and statin use with the presence and extent of intraprostatic inflammation, and the abundance of specific immune cell types, in benign prostate tissue from a subset of men from the placebo arm of the Prostate Cancer Prevention Trial. Men were classified as aspirin or statin users if they reported use at baseline or during the 7-year trial. Presence and extent of inflammation were assessed, and markers of specific immune cell types (CD4, CD8, FoxP3, CD68, and c-KIT) were scored, in slides from end-of-study prostate biopsies taken irrespective of clinical indication, per trial protocol. Logistic regression was used to estimate associations between medication use and inflammation measures, adjusted for potential confounders. Of 357 men included, 61% reported aspirin use and 32% reported statin use. Prevalence and extent of inflammation were not associated with medication use. However, aspirin users were more likely to have low FoxP3, a T regulatory cell marker [OR, 5.60; 95% confidence interval (CI), 1.16-27.07], and statin users were more likely to have low CD68, a macrophage marker (OR, 1.63; 95% CI, 0.81-3.27). If confirmed, these results suggest that these medications may alter the immune milieu of the prostate, which could potentially mediate effects of these medications on advanced/fatal prostate cancer risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1940-6207.CAPR-19-0450DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541466PMC
October 2020

Genome-Wide Gene-Diabetes and Gene-Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia.

Cancer Epidemiol Biomarkers Prev 2020 09 16;29(9):1784-1791. Epub 2020 Jun 16.

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland.

Background: Obesity and diabetes are major modifiable risk factors for pancreatic cancer. Interactions between genetic variants and diabetes/obesity have not previously been comprehensively investigated in pancreatic cancer at the genome-wide level.

Methods: We conducted a gene-environment interaction (GxE) analysis including 8,255 cases and 11,900 controls from four pancreatic cancer genome-wide association study (GWAS) datasets (Pancreatic Cancer Cohort Consortium I-III and Pancreatic Cancer Case Control Consortium). Obesity (body mass index ≥30 kg/m) and diabetes (duration ≥3 years) were the environmental variables of interest. Approximately 870,000 SNPs (minor allele frequency ≥0.005, genotyped in at least one dataset) were analyzed. Case-control (CC), case-only (CO), and joint-effect test methods were used for SNP-level GxE analysis. As a complementary approach, gene-based GxE analysis was also performed. Age, sex, study site, and principal components accounting for population substructure were included as covariates. Meta-analysis was applied to combine individual GWAS summary statistics.

Results: No genome-wide significant interactions (departures from a log-additive odds model) with diabetes or obesity were detected at the SNP level by the CC or CO approaches. The joint-effect test detected numerous genome-wide significant GxE signals in the GWAS main effects top hit regions, but the significance diminished after adjusting for the GWAS top hits. In the gene-based analysis, a significant interaction of diabetes with variants in the (family with sequence similarity 63 member A) gene (significance threshold < 1.25 × 10) was observed in the meta-analysis ( = 1.2 ×10, = 4.2 ×10).

Conclusions: This analysis did not find significant GxE interactions at the SNP level but found one significant interaction with diabetes at the gene level. A larger sample size might unveil additional genetic factors via GxE scans.

Impact: This study may contribute to discovering the mechanism of diabetes-associated pancreatic cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-20-0275DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483330PMC
September 2020

The association between serum sex steroid hormone concentrations and intraprostatic inflammation in men without prostate cancer and irrespective of clinical indication for biopsy in the placebo arm of the Prostate Cancer Prevention Trial.

Prostate 2020 08 7;80(11):895-905. Epub 2020 Jun 7.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

Background: Intraprostatic inflammation is an emerging prostate cancer risk factor. Estrogens are pro-inflammatory while androgens are anti-inflammatory. Thus, we investigated whether serum sex steroid hormone concentrations are associated with intraprostatic inflammation to inform mechanistic links among hormones, inflammation, and prostate cancer.

Methods: We conducted a cross-sectional study among 247 men in the placebo arm of the Prostate Cancer Prevention Trial who had a negative end-of-study biopsy, most (92.7%) performed without clinical indication per trial protocol. Serum estradiol, estrone, and testosterone were previously measured by immunoassay in pooled baseline and Year 3 serum. Free estradiol and free testosterone were calculated. Inflammation was visually assessed (median of three prostate biopsy cores per man). Polytomous or logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (CI) of some or all cores inflamed (both vs none) or any core inflamed (vs none) by hormone tertile, adjusting for age, race, and family history. We evaluated effect modification by waist circumference and body mass index (BMI).

Results: In all, 51.4% had some and 26.3% had all cores inflamed. Free (P-trend = .11) but not total estradiol was suggestively inversely associated with all cores inflamed. In men with waist circumference greater than or equal to 102 cm (P-trend = .021) and BMI ≥ 27.09 kg/m (P-trend = .0037) free estradiol was inversely associated with any core inflamed. Estrone was inversely associated with all cores inflamed (T3: OR = 0.36, 95% CI 0.14-0.95, P-trend = .036). Total (T3: OR = 1.91, 95% CI 0.91-4.02, P-trend = .11) and free (T3: OR = 2.19, 95% CI 1.01-4.74, P-trend = .05) testosterone were positively associated with any core inflamed, especially free testosterone in men with waist circumference less than 102 cm (T3: OR = 3.51, 95% CI 1.03-12.11, P-trend = .05).

Conclusions: In this first study in men without prostate cancer and irrespective of clinical indication for biopsy, contrary to the hypothesis, circulating estrogens appeared to be inversely associated, especially in heavy men, whereas androgens appeared to be positively associated with intraprostatic inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.24023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384586PMC
August 2020

Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk.

Cancer Epidemiol Biomarkers Prev 2020 07 21;29(7):1501-1508. Epub 2020 May 21.

Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota.

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with few known risk factors and biomarkers. Several blood protein biomarkers have been linked to PDAC in previous studies, but these studies have assessed only a limited number of biomarkers, usually in small samples. In this study, we evaluated associations of circulating protein levels and PDAC risk using genetic instruments.

Methods: To identify novel circulating protein biomarkers of PDAC, we studied 8,280 cases and 6,728 controls of European descent from the Pancreatic Cancer Cohort Consortium and the Pancreatic Cancer Case-Control Consortium, using genetic instruments of protein quantitative trait loci.

Results: We observed associations between predicted concentrations of 38 proteins and PDAC risk at an FDR of < 0.05, including 23 of those proteins that showed an association even after Bonferroni correction. These include the protein encoded by , which has been implicated as a potential target gene of PDAC risk variant. Eight of the identified proteins (LMA2L, TM11D, IP-10, ADH1B, STOM, TENC1, DOCK9, and CRBB2) were associated with PDAC risk after adjusting for previously reported PDAC risk variants (OR ranged from 0.79 to 1.52). Pathway enrichment analysis showed that the encoding genes for implicated proteins were significantly enriched in cancer-related pathways, such as STAT3 and IL15 production.

Conclusions: We identified 38 candidates of protein biomarkers for PDAC risk.

Impact: This study identifies novel protein biomarker candidates for PDAC, which if validated by additional studies, may contribute to the etiologic understanding of PDAC development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-20-0091DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334065PMC
July 2020

A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry.

Eur Urol 2020 09 12;78(3):316-320. Epub 2020 May 12.

Department of Surgery, Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

Although men of African ancestry have a high risk of prostate cancer (PCa), no genes or mutations have been identified that contribute to familial clustering of PCa in this population. We investigated whether the African ancestry-specific PCa risk variant at 8q24, rs72725854, is enriched in men with a PCa family history in 9052 cases, 143 cases from high-risk families, and 8595 controls of African ancestry. We found the risk allele to be significantly associated with earlier age at diagnosis, more aggressive disease, and enriched in men with a PCa family history (32% of high-risk familial cases carried the variant vs 23% of cases without a family history and 12% of controls). For cases with two or more first-degree relatives with PCa who had at least one family member diagnosed at age <60 yr, the odds ratios for TA heterozygotes and TT homozygotes were 3.92 (95% confidence interval [CI] = 2.13-7.22) and 33.41 (95% CI = 10.86-102.84), respectively. Among men with a PCa family history, the absolute risk by age 60 yr reached 21% (95% CI = 17-25%) for TA heterozygotes and 38% (95% CI = 13-65%) for TT homozygotes. We estimate that in men of African ancestry, rs72725854 accounts for 32% of the total familial risk explained by all known PCa risk variants. PATIENT SUMMARY: We found that rs72725854, an African ancestry-specific risk variant, is more common in men with a family history of prostate cancer and in those diagnosed with prostate cancer at younger ages. Men of African ancestry may benefit from the knowledge of their carrier status for this genetic risk variant to guide decisions about prostate cancer screening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eururo.2020.04.060DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805560PMC
September 2020

Vitamin D Pathway and Other Related Polymorphisms and Risk of Prostate Cancer: Results from the Prostate Cancer Prevention Trial.

Cancer Prev Res (Phila) 2020 06 26;13(6):521-530. Epub 2020 Feb 26.

Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.

Vitamin D may influence prostate cancer risk, but evidence is inconsistent. We conducted a nested case-control study in the Prostate Cancer Prevention Trial (PCPT). Cases ( = 1,128) and controls ( = 1,205) were frequency matched on age, first-degree relative with prostate cancer, and PCPT treatment arm (finasteride/placebo); African-Americans were oversampled and case/control status was biopsy confirmed. We selected 21 SNPs in vitamin D-related genes , and ) to test genotype and genotype-treatment interactions in relation to prostate cancer. We also tested mean serum 25(OH)D differences by minor allele distributions and tested for serum 25(OH)D-genotype interactions in relation to prostate cancer risk. Log-additive genetic models (Bonferroni-corrected within genes) adjusted for age, body mass index, PSA, and family history of prostate cancer revealed a significant interaction between treatment arm and /rs222016 (finasteride OR = 1.37, placebo OR = 0.85; < 0.05), /rs222014 (finasteride OR = 1.36, placebo OR = 0.85; < 0.05), and /rs703842 (finasteride OR = 0.76, placebo OR = 1.10; < 0.05) among Caucasians, and /rs6599638 (finasteride OR = 4.68, placebo OR = 1.39; < 0.05) among African-Americans. rs1544410 and /rs703842 had significant treatment interactions for high-grade disease among Caucasians (finasteride OR = 0.81, placebo OR = 1.40; < 0.05 and finasteride OR = 0.70, placebo OR = 1.28; < 0.05, respectively). Vitamin D-related SNPs influenced serum 25(OH)D, but gene-serum 25(OH)D effect modification for prostate cancer was marginally observed only for /rs2248359. In conclusion, evidence that vitamin D-related genes or gene-serum 25(OH)D associations influence prostate cancer risk is modest. We found some evidence for gene-finasteride interaction effects for prostate cancer in Caucasians and African-Americans. Results suggest only minimal associations of vitamin D with total or high-grade prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1940-6207.CAPR-19-0413DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272271PMC
June 2020

A meta-analysis of genome-wide association studies of multiple myeloma among men and women of African ancestry.

Blood Adv 2020 01;4(1):181-190

Division of Cancer Genetics and Epidemiology, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD.

Persons of African ancestry (AA) have a twofold higher risk for multiple myeloma (MM) compared with persons of European ancestry (EA). Genome-wide association studies (GWASs) support a genetic contribution to MM etiology in individuals of EA. Little is known about genetic risk factors for MM in individuals of AA. We performed a meta-analysis of 2 GWASs of MM in 1813 cases and 8871 controls and conducted an admixture mapping scan to identify risk alleles. We fine-mapped the 23 known susceptibility loci to find markers that could better capture MM risk in individuals of AA and constructed a polygenic risk score (PRS) to assess the aggregated effect of known MM risk alleles. In GWAS meta-analysis, we identified 2 suggestive novel loci located at 9p24.3 and 9p13.1 at P < 1 × 10-6; however, no genome-wide significant association was noted. In admixture mapping, we observed a genome-wide significant inverse association between local AA at 2p24.1-23.1 and MM risk in AA individuals. Of the 23 known EA risk variants, 20 showed directional consistency, and 9 replicated at P < .05 in AA individuals. In 8 regions, we identified markers that better capture MM risk in persons with AA. AA individuals with a PRS in the top 10% had a 1.82-fold (95% confidence interval, 1.56-2.11) increased MM risk compared with those with average risk (25%-75%). The strongest functional association was between the risk allele for variant rs56219066 at 5q15 and lower ELL2 expression (P = 5.1 × 10-12). Our study shows that common genetic variation contributes to MM risk in individuals with AA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/bloodadvances.2019000491DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960456PMC
January 2020

A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer.

J Natl Cancer Inst 2020 10;112(10):1003-1012

Yale Cancer Center, New Haven, CT, USA.

Background: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown.

Methods: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).

Results: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.

Conclusions: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djz246DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566474PMC
October 2020

Cumulative Burden of Colorectal Cancer-Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer.

Gastroenterology 2020 04 19;158(5):1274-1286.e12. Epub 2019 Dec 19.

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington.

Background & Aims: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC.

Methods: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants.

Results: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 × 10). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings.

Conclusions: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2019.12.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103489PMC
April 2020

Variations in prostate biopsy recommendation and acceptance confound evaluation of risk factors for prostate cancer: Examining race and BMI.

Cancer Epidemiol 2019 12 19;63:101619. Epub 2019 Oct 19.

The Cancer Therapy and Research Center, Christus Santa Rosa Medical Center, San Antonio, TX, United States.

Background: Prostate cancer is ubiquitous in older men; differential screening patterns and variations in biopsy recommendations and acceptance will affect which man is diagnosed and, therefore, evaluation of cancer risk factors. We describe a statistical method to reduce prostate cancer detection bias among African American (n = 3398) and Non-Hispanic White men (n = 22,673) who participated in the Selenium and Vitamin E Cancer Prevention trial (SELECT) and revisit a previously reported association between race, obesity and prostate cancer risk.

Methods: For men with screening values suggesting prostate cancer but in whom biopsy was not performed, the Prostate Cancer Prevention Trial Risk Calculator was used to estimate probability of prostate cancer. Associations of body mass index (BMI) and race with incident prostate cancer were compared for observed versus imputation-enhanced outcomes using incident density ratios.

Results: Accounting for differential biopsy assessment, the previously reported positive linear trend between BMI and prostate cancer in African American men was not observed; no BMI association was found among Non-Hispanic White men.

Conclusions: Differential disease classification among men who may be recommended to undergo and then consider whether to accept a prostate biopsy leads to inaccurate identification of prostate cancer risk factors. Imputing a man's prostate cancer status reduces detection bias. Covariate adjustment does not address the problem of outcome misclassification. Cohorts evaluating incident prostate cancer should collect longitudinal screening and biopsy data to adjust for this potential bias.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canep.2019.101619DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938232PMC
December 2019

More on Long-Term Effects of Finasteride on Prostate Cancer Mortality. Reply.

N Engl J Med 2019 05;380(20):e38

CHRISTUS Santa Rosa Hospital Medical Center, San Antonio, TX

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMc1902700DOI Listing
May 2019

Meta-analysis of 16 studies of the association of alcohol with colorectal cancer.

Int J Cancer 2020 02 7;146(3):861-873. Epub 2019 Jun 7.

Fred Hutchinson Cancer Research Center, Seattle, WA.

Alcohol consumption is an established risk factor for colorectal cancer (CRC). However, while studies have consistently reported elevated risk of CRC among heavy drinkers, associations at moderate levels of alcohol consumption are less clear. We conducted a combined analysis of 16 studies of CRC to examine the shape of the alcohol-CRC association, investigate potential effect modifiers of the association, and examine differential effects of alcohol consumption by cancer anatomic site and stage. We collected information on alcohol consumption for 14,276 CRC cases and 15,802 controls from 5 case-control and 11 nested case-control studies of CRC. We compared adjusted logistic regression models with linear and restricted cubic splines to select a model that best fit the association between alcohol consumption and CRC. Study-specific results were pooled using fixed-effects meta-analysis. Compared to non-/occasional drinking (≤1 g/day), light/moderate drinking (up to 2 drinks/day) was associated with a decreased risk of CRC (odds ratio [OR]: 0.92, 95% confidence interval [CI]: 0.88-0.98, p = 0.005), heavy drinking (2-3 drinks/day) was not significantly associated with CRC risk (OR: 1.11, 95% CI: 0.99-1.24, p = 0.08) and very heavy drinking (more than 3 drinks/day) was associated with a significant increased risk (OR: 1.25, 95% CI: 1.11-1.40, p < 0.001). We observed no evidence of interactions with lifestyle risk factors or of differences by cancer site or stage. These results provide further evidence that there is a J-shaped association between alcohol consumption and CRC risk. This overall pattern was not significantly modified by other CRC risk factors and there was no effect heterogeneity by tumor site or stage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.32377DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819207PMC
February 2020

Author Correction: Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.

Nat Genet 2019 02;51(2):363

Dame Roma Mitchell Cancer Research Centre, University of Adelaide, Adelaide, South Australia, Australia.

In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0330-6DOI Listing
February 2019

Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer.

J Natl Cancer Inst 2019 Jun;111(6):557-567

Division of Research, Kaiser Permanente Northern California, Oakland, CA.

Background: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.

Methods: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.

Results: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.

Conclusion: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djy155DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579744PMC
June 2019

Case-only Methods Identified Genetic Loci Predicting a Subgroup of Men with Reduced Risk of High-grade Prostate Cancer by Finasteride.

Cancer Prev Res (Phila) 2019 02 11;12(2):113-120. Epub 2018 Dec 11.

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.

In the Prostate Cancer Prevention Trial (PCPT), genotypes that may modify the effect of finasteride on the risk of prostate cancer have not been identified. Germline genetic data from 1,157 prostate cancer cases in PCPT were analyzed by case-only methods. Genotypes included 357 SNPs from 83 candidate genes in androgen metabolism, inflammation, circadian rhythm, and other pathways. Univariate case-only analysis was conducted to evaluate whether individual SNPs modified the finasteride effect on the risk of high-grade and low-grade prostate cancer. Case-only classification trees and random forests, which are powerful machine learning methods with resampling-based controls for model complexity, were employed to identify a predictive signature for genotype-specific treatment effects. Accounting for multiple testing, a single SNP in gene (rs472402) significantly modified the finasteride effect on high-grade prostate cancer (Gleason score > 6) in PCPT (family-wise error rate < 0.05). Men carrying GG genotype at this locus had a 55% reduction of the risk in developing high-grade cancer when assigned to finasteride (RR = 0.45; 95% confidence interval, 0.27-0.75). Additional effect-modifying SNPs with moderate statistical significance were identified by case-only trees and random forests. A prediction model built by the case-only random forest method with 28 selected SNPs classified 37% of PCPT men to have reduced risk of high-grade prostate cancer when taking finasteride, while the others have increased risk. In conclusion, case-only methods identified SNPs that modified the effect of finasteride on the risk of high-grade prostate cancer and predicted a subgroup of men who had reduced cancer risk by finasteride.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1940-6207.CAPR-18-0284DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365187PMC
February 2019
-->