Publications by authors named "Phani Rama Krishna Behra"

11 Publications

  • Page 1 of 1

Correction to: Whole-Genome sequencing and comparative genomics of Mycobacterium spp. from farmed Atlantic and coho salmon in Chile.

Antonie Van Leeuwenhoek 2021 Sep;114(9):1337-1338

Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt, Chile.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-021-01606-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379113PMC
September 2021

Whole-Genome sequencing and comparative genomics of Mycobacterium spp. from farmed Atlantic and coho salmon in Chile.

Antonie Van Leeuwenhoek 2021 Sep 30;114(9):1323-1336. Epub 2021 May 30.

Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt, Chile.

Several members of the Mycobacterium genus cause invasive infections in humans and animals. According to a recent phylogenetic analysis, some strains of Mycobacterium salmoniphilum (Msal), which are the main culprit in bacterial outbreaks in freshwater fish aquaculture, have been assigned to a separate branch containing Mycobacterium franklinii (Mfra), another species that causes infections in humans. However, this genus is little studied in an aquaculture context. Here, we isolated four Mycobacterium spp. strains from freshwater cultures of Atlantic and coho salmon in Chile and performed whole-genome sequencing for deep genomic characterization. In addition, we described the gross pathology and histopathology of the outbreaks. Several bioinformatic analyses were performed using the genomes of these four Mycobacterium isolates in conjunction with those of Msal strains, four Msal-like strains, and one Mfra strains, plus 17 other publicly available Mycobacterium genomes. We found that three isolates are clustered into the Msal branch, whereas one isolate clustered with the Mfra/Msal-like strains. We further evaluated the presence of virulence and antimicrobial resistance genes and observed that the four isolates were closely related to the Msal and Msal-like taxa and carried several antimicrobial resistance and virulence genes that are similar to those of other pathogenic members of the Mycobacterium clade. Altogether, our characterization Msal and Msal-like presented here shed new light on the basis of mycobacteriosis provides quantitative evidence that Mycobacterium strains are a potential risk for aquaculture asetiological agents of emerging diseases, and highlight their biological scopes in the aquaculture industry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-021-01592-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379129PMC
September 2021

Intracellular localization of the mycobacterial stressosome complex.

Sci Rep 2021 May 12;11(1):10060. Epub 2021 May 12.

Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 751 24, Uppsala, Sweden.

Microorganisms survive stresses by alternating the expression of genes suitable for surviving the immediate and present danger and eventually adapt to new conditions. Many bacteria have evolved a multiprotein "molecular machinery" designated the "Stressosome" that integrates different stress signals and activates alternative sigma factors for appropriate downstream responses. We and others have identified orthologs of some of the Bacillus subtilis stressosome components, RsbR, RsbS, RsbT and RsbUVW in several mycobacteria and we have previously reported mutual interactions among the stressosome components RsbR, RsbS, RsbT and RsbUVW from Mycobacterium marinum. Here we provide evidence that "STAS" domains of both RsbR and RsbS are important for establishing the interaction and thus critical for stressosome assembly. Fluorescence microscopy further suggested co-localization of RsbR and RsbS in multiprotein complexes visible as co-localized fluorescent foci distributed at scattered locations in the M. marinum cytoplasm; the number, intensity and distribution of such foci changed in cells under stressed conditions. Finally, we provide bioinformatics data that 17 (of 244) mycobacteria, which lack the RsbRST genes, carry homologs of Bacillus cereus genes rsbK and rsbM indicating the existence of alternative σ activation pathways among mycobacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-89069-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115616PMC
May 2021

Author Correction: Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing.

Sci Rep 2020 Mar 18;10(1):5246. Epub 2020 Mar 18.

Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-61218-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078255PMC
March 2020

Insight into the biology of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members.

Sci Rep 2019 12 17;9(1):19259. Epub 2019 Dec 17.

Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden.

Nontuberculous mycobacteria, NTM, are of growing concern and among these members of the Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clades can cause infections in humans and they are resistant to first-line anti-tuberculosis drugs. They can be isolated from different ecological niches such as soil, tap water and ground water. Mycobacteria, such as Mmuc and Mneo, are classified as rapid growing mycobacteria, RGM, while the most familiar, Mycobacterium tuberculosis, belongs to the slow growing mycobacteria, SGM. Modern "omics" approaches have provided new insights into our understanding of the biology and evolution of this group of bacteria. Here we present comparative genomics data for seventeen NTM of which sixteen belong to the Mmuc- and Mneo-clades. Focusing on virulence genes, including genes encoding sigma/anti-sigma factors, serine threonine protein kinases (STPK), type VII (ESX genes) secretion systems and mammalian cell entry (Mce) factors we provide insight into their presence as well as phylogenetic relationship in the case of the sigma/anti-sigma factors and STPKs. Our data further suggest that these NTM lack ESX-5 and Mce2 genes, which are known to affect virulence. In this context, Mmuc- and Mneo-clade members lack several of the genes in the glycopeptidolipid (GLP) locus, which have roles in colony morphotype appearance and virulence. For the M. mucogenicum type strain, Mmuc, we provide RNASeq data focusing on mRNA levels for sigma factors, STPK, ESX proteins and Mce proteins. These data are discussed and compared to in particular the SGM and fish pathogen Mycobacterium marinum. Finally, we provide insight into as to why members of the Mmuc- and Mneo-clades show resistance to rifampin and isoniazid, and why Mmuc forms a rough colony morphotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-55464-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917791PMC
December 2019

Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA.

BMC Evol Biol 2019 06 18;19(1):124. Epub 2019 Jun 18.

Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden.

Background: Mycobacteria occupy various ecological niches and can be isolated from soil, tap water and ground water. Several cause diseases in humans and animals. To get deeper insight into our understanding of mycobacterial evolution focusing on tRNA and non-coding (nc)RNA, we conducted a comparative genome analysis of Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clade members.

Results: Genome sizes for Mmuc- and Mneo-clade members vary between 5.4 and 6.5 Mbps with the complete Mmuc (type strain) genome encompassing 6.1 Mbp. The number of tRNA genes range between 46 and 79 (including one pseudo tRNA gene) with 39 tRNA genes common among the members of these clades, while additional tRNA genes were probably acquired through horizontal gene transfer. Selected tRNAs and ncRNAs (RNase P RNA, tmRNA, 4.5S RNA, Ms1 RNA and 6C RNA) are expressed, and the levels for several of these are higher in stationary phase compared to exponentially growing cells. The rare tRNATAT isoacceptor and two for mycobacteria novel ncRNAs: the Lactobacillales-derived GOLLD RNA and a homolog to the antisense Salmonella typhimurium phage Sar RNA, were shown to be present and expressed in certain Mmuc-clade members.

Conclusions: Phages, IS elements, horizontally transferred tRNA gene clusters, and phage-derived ncRNAs appears to have influenced the evolution of the Mmuc- and Mneo-clades. While the number of predicted coding sequences correlates with genome size, the number of tRNA coding genes does not. The majority of the tRNA genes in mycobacteria are transcribed mainly from single genes and the levels of certain ncRNAs, including RNase P RNA (essential for the processing of tRNAs), are higher at stationary phase compared to exponentially growing cells. We provide supporting evidence that Ms1 RNA represents a mycobacterial 6S RNA variant. The evolutionary routes for the ncRNAs RNase P RNA, tmRNA and Ms1 RNA are different from that of the core genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12862-019-1447-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582537PMC
June 2019

Extended insight into the Mycobacterium chelonae-abscessus complex through whole genome sequencing of Mycobacterium salmoniphilum outbreak and Mycobacterium salmoniphilum-like strains.

Sci Rep 2019 03 14;9(1):4603. Epub 2019 Mar 14.

Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.

Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum separates into three branches named group I, II and III with the M. salmoniphilum type strain belonging to group II. Among predicted virulence factors, the presence of phospholipase C (plcC), which is a major virulence factor that makes M. abscessus highly cytotoxic to mouse macrophages, and that M. franklinii originally was isolated from infected humans make it plausible that the outbreak in the animal facility was caused by a M. salmoniphilum-like strain. Interestingly, M. salmoniphilum-like was isolated from tap water suggesting that it can be present in the environment. Moreover, we predicted the presence of mutational hotspots in the M. salmoniphilum isolates and 26% of these hotspots overlap with genes categorized as having roles in virulence, disease and defense. We also provide data about key genes involved in transcription and translation such as sigma factor, ribosomal protein and tRNA genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-40922-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418233PMC
March 2019

Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing.

Sci Rep 2018 08 13;8(1):12040. Epub 2018 Aug 13.

Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.

Mycobacterium marinum is the causative agent for the tuberculosis-like disease mycobacteriosis in fish and skin lesions in humans. Ubiquitous in its geographical distribution, M. marinum is known to occupy diverse fish as hosts. However, information about its genomic diversity is limited. Here, we provide the genome sequences for 15 M. marinum strains isolated from infected humans and fish. Comparative genomic analysis of these and four available genomes of the M. marinum strains M, E11, MB2 and Europe reveal high genomic diversity among the strains, leading to the conclusion that M. marinum should be divided into two different clusters, the "M"- and the "Aronson"-type. We suggest that these two clusters should be considered to represent two M. marinum subspecies. Our data also show that the M. marinum pan-genome for both groups is open and expanding and we provide data showing high number of mutational hotspots in M. marinum relative to other mycobacteria such as Mycobacterium tuberculosis. This high genomic diversity might be related to the ability of M. marinum to occupy different ecological niches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-30152-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089878PMC
August 2018

The Mycobacterium phlei Genome: Expectations and Surprises.

Genome Biol Evol 2016 Apr 8;8(4):975-85. Epub 2016 Apr 8.

Department of Cell and Molecular Biology, Box 596, Biomedical Centre, Uppsala, Sweden

Mycobacterium phlei, a nontuberculosis mycobacterial species, was first described in 1898-1899. We present the complete genome sequence for theM. phlei CCUG21000(T)type strain and the draft genomes for four additional strains. The genome size for all five is 5.3 Mb with 69.4% Guanine-Cytosine content. This is ≈0.35 Mbp smaller than the previously reported M. phlei RIVM draft genome. The size difference is attributed partly to large bacteriophage sequence fragments in theM. phlei RIVM genome. Comparative analysis revealed the following: 1) A CRISPR system similar to Type 1E (cas3) in M. phlei RIVM; 2) genes involved in polyamine metabolism and transport (potAD,potF) that are absent in other mycobacteria, and 3) strain-specific variations in the number of σ-factor genes. Moreover,M. phlei has as many as 82 mce(mammalian cell entry) homologs and many of the horizontally acquired genes in M. phlei are present in other environmental bacteria including mycobacteria that share similar habitat. Phylogenetic analysis based on 693 Mycobacterium core genes present in all complete mycobacterial genomes suggested that its closest neighbor is Mycobacterium smegmatis JS623 and Mycobacterium rhodesiae NBB3, while it is more distant toM. smegmatis mc2 155.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gbe/evw049DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860684PMC
April 2016

Comparative Sigma Factor-mRNA Levels in Mycobacterium marinum under Stress Conditions and during Host Infection.

PLoS One 2015 7;10(10):e0139823. Epub 2015 Oct 7.

Department of Cell and Molecular Biology, Uppsala University Biomedical Centre, Uppsala, Sweden.

We have used RNASeq and qRT-PCR to study mRNA levels for all σ-factors in different Mycobacterium marinum strains under various growth and stress conditions. We also studied their levels in M. marinum from infected fish and mosquito larvae. The annotated σ-factors were expressed and transcripts varied in relation to growth and stress conditions. Some were highly abundant such as sigA, sigB, sigC, sigD, sigE and sigH while others were not. The σ-factor mRNA profiles were similar after heat stress, during infection of fish and mosquito larvae. The similarity also applies to some of the known heat shock genes such as the α-crystallin gene. Therefore, it seems probable that the physiological state of M. marinum is similar when exposed to these different conditions. Moreover, the mosquito larvae data suggest that this is the state that the fish encounter when infected, at least with respect to σ-factor mRNA levels. Comparative genomic analysis of σ-factor gene localizations in three M. marinum strains and Mycobacterium tuberculosis H37Rv revealed chromosomal rearrangements that changed the localization of especially sigA, sigB, sigD, sigE, sigF and sigJ after the divergence of these two species. This may explain the variation in species-specific expression upon exposure to different growth conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139823PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596819PMC
June 2016

Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics.

Genome Biol Evol 2015 Jun 16;7(7):1871-86. Epub 2015 Jun 16.

Department of Cell and Molecular Biology, Uppsala University, Sweden

We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gbe/evv111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524478PMC
June 2015
-->