Publications by authors named "Petra Vlckova"

2 Publications

  • Page 1 of 1

Radiosensitisation of Hepatocellular Carcinoma Cells by Vandetanib.

Cancers (Basel) 2020 Jul 13;12(7). Epub 2020 Jul 13.

University College London Cancer Institute, University College London, London WC1E 6BT, UK.

Hepatocellular Carcinoma (HCC) is increasing in incidence worldwide and requires new approaches to therapy. The combination of anti-angiogenic drug therapy and radiotherapy is one promising new approach. The anti-angiogenic drug vandetanib is a tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) and RET proto-oncogene with radio-enhancement potential. To explore the benefit of combined vandetanib and radiotherapy treatment for HCC, we studied outcomes following combined treatment in pre-clinical models.

Methods: Vandetanib and radiation treatment were combined in HCC cell lines grown and . In addition to 2D migration and clonogenic assays, the combination was studied in 3D spheroids and a syngeneic mouse model of HCC.

Results: Vandetanib IC 50 s were measured in 20 cell lines and the drug was found to significantly enhance radiation cell kill and to inhibit both cell migration and invasion . , combination therapy significantly reduced cancer growth and improved overall survival, an effect that persisted for the duration of vandetanib treatment.

Conclusion: In 2D and 3D studies and in a syngeneic model , the combination of vandetanib plus radiotherapy was more efficacious than either treatment alone. This new combination therapy for HCC merits evaluation in clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12071878DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408860PMC
July 2020

Cell-type-specific signaling networks in heterocellular organoids.

Nat Methods 2020 03 17;17(3):335-342. Epub 2020 Feb 17.

Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, UK.

Despite the widespread adoption of organoids as biomimetic tissue models, methods to comprehensively analyze cell-type-specific post-translational modification (PTM) signaling networks in organoids are absent. Here, we report multivariate single-cell analysis of such networks in organoids and organoid cocultures. Simultaneous analysis by mass cytometry of 28 PTMs in >1 million single cells derived from small intestinal organoids reveals cell-type- and cell-state-specific signaling networks in stem, Paneth, enteroendocrine, tuft and goblet cells, as well as enterocytes. Integrating single-cell PTM analysis with thiol-reactive organoid barcoding in situ (TOBis) enables high-throughput comparison of signaling networks between organoid cultures. Cell-type-specific PTM analysis of colorectal cancer organoid cocultures reveals that shApc, Kras and Trp53 cell-autonomously mimic signaling states normally induced by stromal fibroblasts and macrophages. These results demonstrate how standard mass cytometry workflows can be modified to perform high-throughput multivariate cell-type-specific signaling analysis of healthy and cancerous organoids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41592-020-0737-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060080PMC
March 2020