Publications by authors named "Petr Vodička"

42 Publications

Emerging Roles of Exosomes in Huntington's Disease.

Int J Mol Sci 2021 Apr 15;22(8). Epub 2021 Apr 15.

Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Rumburska 89, 277 21 Libechov, Czech Republic.

Huntington's disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22084085DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071291PMC
April 2021

Distinctive Sources Govern Organic Aerosol Fractions with Different Degrees of Oxygenation in the Urban Atmosphere.

Environ Sci Technol 2021 04 30;55(8):4494-4503. Epub 2021 Mar 30.

Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan.

Understanding how the sources of an atmospheric organic aerosol (OA) govern its burden is crucial for assessing its impact on the environment and adopting proper control strategies. In this study, the sources of OA over Beijing were assessed year-around based on the combination of two separation approaches for OA, one from chemical fractionation into the high-polarity fraction of water-soluble organic matter (HP-WSOM), humic-like substances (HULIS), and water-insoluble organic matter (WISOM), and the other from statistical grouping using positive matrix factorization (PMF) of high-resolution aerosol mass spectra. Among the three OA fractions, HP-WSOM has the highest O/C ratio (1.36), followed by HULIS (0.56) and WISOM (0.17). The major sources of different OA fractions were distinct: HP-WSOM was dominated by more oxidized oxygenated OA (96%); HULIS by cooking-like OA (40%), less oxidized oxygenated OA (27%), and biomass burning OA (21%); and WISOM by fossil fuel OA (77%). In addition, our results provide evidence that mass spectral-based PMF factors are associated with specific substructures in molecules. These structures are further discussed in the context of the FT-IR results. This study presents an overall relationship of OA groups monitored by chemical and statistical approaches for the first time, providing insights for future source apportionment studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c08604DOI Listing
April 2021

Proteomic Characterization of Human Neural Stem Cells and Their Secretome During Differentiation.

Front Cell Neurosci 2020 28;14:612560. Epub 2021 Jan 28.

Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.

Cell therapies represent a promising approach to slow down the progression of currently untreatable neurodegenerative diseases (e.g., Alzheimer's and Parkinson's disease or amyotrophic lateral sclerosis), as well as to support the reconstruction of functional neural circuits after spinal cord injuries. In such therapies, the grafted cells could either functionally integrate into the damaged tissue, partially replacing dead or damaged cells, modulate inflammatory reaction, reduce tissue damage, or support neuronal survival by secretion of cytokines, growth, and trophic factors. Comprehensive characterization of cells and their proliferative potential, differentiation status, and population purity before transplantation is crucial to preventing safety risks, e.g., a tumorous growth due to the proliferation of undifferentiated stem cells. We characterized changes in the proteome and secretome of human neural stem cells (NSCs) during their spontaneous (EGF/FGF2 withdrawal) differentiation and differentiation with trophic support by BDNF/GDNF supplementation. We used LC-MS/MS in SWATH-MS mode for global cellular proteome profiling and quantified almost three thousand cellular proteins. Our analysis identified substantial protein differences in the early stages of NSC differentiation with more than a third of all the proteins regulated (including known neuronal and NSC multipotency markers) and revealed that the BDNF/GDNF support affected more the later stages of the NSC differentiation. Among the pathways identified as activated during both spontaneous and BDNF/GDNF differentiation were the HIF-1 signaling pathway, Wnt signaling pathway, and VEGF signaling pathway. Our follow-up secretome analysis using Luminex multiplex immunoassay revealed significant changes in the secretion of VEGF and IL-6 during NSC differentiation. Our results further demonstrated an increased expression of neuropilin-1 as well as catenin β-1, both known to participate in the regulation of VEGF signaling, and showed that VEGF-A isoform 121 (VEGF121), in particular, induces proliferation and supports survival of differentiating cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncel.2020.612560DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876319PMC
January 2021

Spatial-temporal variability of aerosol sources based on chemical composition and particle number size distributions in an urban settlement influenced by metallurgical industry.

Environ Sci Pollut Res Int 2020 Nov 5;27(31):38631-38643. Epub 2020 Jul 5.

Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY, 14642-0708, USA.

The Moravian-Silesian region of the Czech Republic with its capital city Ostrava is a European air pollution hot spot for airborne particulate matter (PM). Therefore, the spatiotemporal variability assessment of source contributions to aerosol particles is essential for the successful abatement strategies implementation. Positive Matrix Factorization (PMF) was applied to highly-time resolved PM chemical composition (1 h resolution) and particle number size distribution (PNSD, 14 nm - 10 μm) data measured at the suburban (Ostrava-Plesná) and urban (Ostrava-Radvanice) residential receptor sites in parallel during an intensive winter campaign. Diel patterns, meteorological variables, inorganic and organic markers, and associations between the chemical composition factors and PNSD factors were used to identify the pollution sources and their origins (local, urban agglomeration and regional). The source apportionment analysis resolved six and four PM sources in Plesná and Radvanice, respectively. In Plesná, local residential combustion sources (coal and biomass combustion) followed by regional combustion sources (residential heating, metallurgical industry) were the main contributors to PM. In Radvanice, local residential combustion and the metallurgical industry were the most important PM sources. Aitken and accumulation mode particles emitted by local residential combustion sources along with common urban sources (residential heating, industry and traffic) were the main contributors to the particle number concentration (PNC) in Plesná. Additionally, accumulation mode particles from local residential combustion sources and regional pollution dominated the particle volume concentration (PVC). In Radvanice, local industrial sources were the major contributors to PNC and local coal combustion was the main contributor to PVC. The source apportionment results from the complementary datasets elucidated the relevance of highly time-resolved parallel measurements at both receptor sites given the specific meteorological conditions produced by the regional orography. These results are in agreement with our previous studies conducted at this site. Graphical abstract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09694-0DOI Listing
November 2020

Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region.

Neurobiol Dis 2020 07 19;141:104950. Epub 2020 May 19.

Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA.

Molecular changes at synapses are thought to underly the deficits in motor and cognitive dysfunction seen in Huntington's disease (HD). Previously we showed in synaptosome preparations age dependent changes in levels of selected proteins examined by western blot assay in the striatum of Q140/Q140 HD mice. To assess if CAG repeat length influenced protein changes at the synapse, we examined synaptosomes from 6-month old heterozygote HD mice with CAG repeat lengths ranging from 50 to 175. Analysis of 19 selected proteins showed that increasing CAG repeat length in huntingtin (HTT) increased the number of affected proteins in HD striatal synaptosomes. Moreover, SDS-soluble total HTT (WT plus mutant HTT) and pThr3 HTT were reduced with increasing CAG repeat length, and there was no pSer421 mutant HTT detected in any HD mice. A LC-MS/MS and bioinfomatics study of synaptosomes from 2 and 6-month old striatum and cortex of Q140/Q7 HD mice showed enrichment of synaptic proteins and an influence of age, gender and brain region on the number of protein changes. HD striatum at 6 months had the most protein changes that included many HTT protein interactors, followed by 2-month old HD striatum, 2-month old HD cortex and 6-month HD cortex. SDS-insoluble mutant HTT was detected in HD striatal synaptosomes consistent with the presence of aggregates. Proteins changed in cortex differed from those in striatum. Pathways affected in HD striatal synaptosomes that were not identified in whole striatal lysates of the same HD mouse model included axon guidance, focal adhesion, neurotrophin signaling, regulation of actin cytoskeleton, endocytosis, and synaptic vesicle cycle. Results suggest that synaptosomes prepared from HD mice are highly informative for monitoring protein changes at the synapse and may be preferred for assessing the effects of experimental therapies on synaptic function in HD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2020.104950DOI Listing
July 2020

Expression of lamin C2 in mammalian oocytes.

PLoS One 2020 28;15(4):e0229781. Epub 2020 Apr 28.

Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.

Lamin C2 (LMN C2) is a short product of the lamin a gene. It is a germ cell-specific lamin and has been extensively studied in male germ cells. In this study, we focussed on the expression and localization of LMN C2 in fully-grown germinal vesicle (GV) oocytes. We detected LMN C2 in the fully-grown germinal vesicle oocytes of various mammalian species with confirmation done by immunoblotting the wild type and Lmnc2 gene deleted testes. Expression of LMN C2 tagged with GFP showed localization of LMN C2 to the nuclear membrane of the oocyte. Moreover, the LMN C2 protein notably disappeared after nuclear envelope breakdown (NEBD) and the expression of LMN C2 was significantly reduced in the oocytes from aged females and ceased altogether during meiotic maturation. These results provide new insights regarding LMN C2 expression in the oocytes of various mammalian species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229781PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188254PMC
July 2020

A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential.

Sci Rep 2020 03 9;10(1):4290. Epub 2020 Mar 9.

Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.

Multipotent mesenchymal stromal cells (MSCs) can be considered an accessible therapeutic tool for regenerative medicine. Here, we compared the growth kinetics, immunophenotypic and immunomodulatory properties, gene expression and secretome profile of MSCs derived from human adult bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and Wharton's jelly (WJ-MSCs) cultured in clinically-relevant conditions, with the focus on the neuroregenerative potential. All the cell types were positive for CD10/CD29/CD44/CD73/CD90/CD105/HLA-ABC and negative for CD14/CD45/CD235a/CD271/HLA-DR/VEGFR2 markers, but they differed in the expression of CD34/CD133/CD146/SSEA-4/MSCA-1/CD271/HLA-DR markers. BM-MSCs displayed the highest immunomodulatory activity compared to AT- and WJ-MSCs. On the other hand, BM-MSCs secreted the lower content and had the lower gene expression of neurotrophic growth factors compared to other cell lines, which may be caused by the higher sensitivity of BM-MSCs to nutrient limitations. Despite the differences in growth factor secretion, the MSC secretome derived from all cell sources had a pronounced neurotrophic potential to stimulate the neurite outgrowth of DRG-neurons and reduce the cell death of neural stem/progenitor cells after HO treatment. Overall, our study provides important information for the transfer of basic MSC research towards clinical-grade manufacturing and therapeutic applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-61167-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062771PMC
March 2020

Luminex xMAP Assay to Quantify Cytokines in Cancer Patient Serum.

Methods Mol Biol 2020 ;2108:65-88

Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Libechov, Czech Republic.

Cytokines, chemokines, and growth factors are key mediators of cell proliferation, migration, and immune response, and in tumor microenvironment, such factors contribute to regulation of tumor growth, immune cell recruitment, angiogenesis, and metastasis. In body fluids, levels of inflammatory mediators reflect the patient immune response to the disease and may predict the effects of targeted therapies. Significant improvements in cytokine detection techniques have been made during last 10 years leading to sensitive quantification of such potent molecules present in low pg/mL levels. Among the techniques, Luminex xMAP multiplex assays allow for simultaneous quantification of up to 100 analytes with high sensitivity, broad dynamic range of quantification, high throughput, and minimal sample requirements. In this chapter we describe a detailed protocol for the application of xMAP assays using Luminex 200™ analyzer with xPonent acquisition software to quantify cytokines, chemokines, and growth factors secreted to blood serum and plasma of cancer patients. We also discuss how sample preparation, instrument settings, and standard curve fitting algorithms can influence validity of obtained results. Special attention is paid to data analysis using open source R statistical environment and we provide an example dataset of cytokine levels measured in serum and corresponding R script for standard curve fitting and concentration estimates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0247-8_6DOI Listing
January 2021

Assessing average somatic CAG repeat instability at the protein level.

Sci Rep 2019 12 16;9(1):19152. Epub 2019 Dec 16.

Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Sandwich ELISA-based methods use Abs that target the expanded polyglutamine (polyQ) tract to quantify mutant huntingtin (mHTT). Using Meso Scale Discovery (MSD) assay, the mHTT signal detected with MW1 Ab correlated with polyQ length and doubled with a difference of only 7 glutamine residues between equivalent amounts of purified mHTTexon1 proteins. Similar polyQ length-dependent effects on MSD signals were confirmed using endogenous full length mHTT from brains of Huntington's disease (HD) knock-in (KI) mice. We used this avidity bias to devise a method to assess average CAG repeat instability at the protein level in a mixed population of HTT proteins present in tissues. Signal detected for average polyQ length quantification at the protein level by our method exhibited a strong correlation with average CAG repeat length at the genomic DNA level determined by PCR method in striatal tissue homogenates from Hdh KI mice and in human HD postmortem cortex. This work establishes that CAG repeat instability in mutant HTT is reflected at the protein level.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-55202-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915696PMC
December 2019

Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma.

Genes (Basel) 2019 11 9;10(11). Epub 2019 Nov 9.

Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, 277 21 Libechov, Czech Republic.

National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/genes10110915DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895830PMC
November 2019

Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study.

Oncol Rep 2019 Nov 17;42(5):1793-1804. Epub 2019 Sep 17.

Department of Dermatovenereology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague 128 00, Czech Republic.

The steadily increasing incidence of malignant melanoma (MM) and its aggressive behaviour makes this tumour an attractive cancer research topic. The tumour microenvironment is being increasingly recognised as a key factor in cancer biology, with an impact on proliferation, invasion, angiogenesis and metastatic spread, as well as acquired therapy resistance. Multiple bioactive molecules playing cooperative roles promote the chronic inflammatory milieu in tumours, making inflammation a hallmark of cancer. This specific inflammatory setting is evident in the affected tissue. However, certain mediators can leak into the systemic circulation and affect the whole organism. The present study analysed the complex inflammatory response in the sera of patients with MM of various stages. Multiplexed proteomic analysis (Luminex Corporation) of 31 serum proteins was employed. These targets were observed in immunohistochemical profiles of primary tumours from the same patients. Furthermore, these proteins were analysed in MM cell lines and the principal cell population of the melanoma microenvironment, cancer‑associated fibroblasts. Growth factors such as hepatocyte growth factor, granulocyte‑colony stimulating factor and vascular endothelial growth factor, chemokines RANTES and interleukin (IL)‑8, and cytokines IL‑6, interferon‑α and IL‑1 receptor antagonist significantly differed in these patients compared with the healthy controls. Taken together, the results presented here depict the inflammatory landscape that is altered in melanoma patients, and highlight potentially relevant targets for therapy improvement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2019.7319DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787991PMC
November 2019

Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma.

Proteomes 2019 Apr 25;7(2). Epub 2019 Apr 25.

Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.

Extracellular vesicles (EVs) are a highly attractive subject of biomedical research as possible carriers of nucleic acid and protein biomarkers. EVs released to body fluids enable indirect access to inner organs by so-called "liquid biopsies". Obtaining a high-quality EV sample with minimum contaminants is crucial for proteomic analyses using LC-MS/MS or other techniques. However, the EV content in various body fluids largely differs, which may hamper subsequent analyses. Here, we present a comparison of extracellular vesicle yields from blood plasma, cerebrospinal fluid, and seminal plasma using an experimental pig model. Pigs are widely used in biomedical research as large animal models with anatomy and physiology close to those of humans and enable studies (e.g., of the nervous system) that are unfeasible in humans. EVs were isolated from body fluids by differential centrifugation followed by ultracentrifugation. EVs were characterized according to protein yields and to the quality of the isolated vesicles (e.g., size distribution, morphology, positivity for exosome markers). In our experimental setting, substantial differences in EV amounts were identified among body fluids, with the seminal plasma being the richest EV source. The yields of pellet proteins from ultracentrifugation of 1 mL of porcine body fluids may help to estimate body fluid input volumes to obtain sufficient samples for subsequent proteomic analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/proteomes7020017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630935PMC
April 2019

A Combination of Intrathecal and Intramuscular Application of Human Mesenchymal Stem Cells Partly Reduces the Activation of Necroptosis in the Spinal Cord of SOD1 Rats.

Stem Cells Transl Med 2019 06 25;8(6):535-547. Epub 2019 Feb 25.

Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.

An increasing number of studies have demonstrated the beneficial effects of human mesenchymal stem cells (hMSC) in the treatment of amyotrophic lateral sclerosis (ALS). We compared the effect of repeated intrathecal applications of hMSC or their conditioned medium (CondM) using lumbar puncture or injection into the muscle (quadriceps femoris), or a combination of both applications in symptomatic SOD1 rats. We further assessed the effect of the treatment on three major cell death pathways (necroptosis, apoptosis, and autophagy) in the spinal cord tissue. All the animals were behaviorally tested (grip strength test, Basso Beattie Bresnahan (BBB) test, and rotarod), and the tissue was analyzed immunohistochemically, by qPCR and Western blot. All symptomatic SOD1 rats treated with hMSC had a significantly increased lifespan, improved motor activity and reduced number of Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells. Moreover, a combined hMSC delivery increased motor neuron survival, maintained neuromuscular junctions in quadriceps femoris and substantially reduced the levels of proteins involved in necroptosis (Rip1, mixed lineage kinase-like protein, cl-casp8), apoptosis (cl-casp 9) and autophagy (beclin 1). Furthermore, astrogliosis and elevated levels of Connexin 43 were decreased after combined hMSC treatment. The repeated application of CondM, or intramuscular injections alone, improved motor activity; however, this improvement was not supported by changes at the molecular level. Our results provide new evidence that a combination of repeated intrathecal and intramuscular hMSC applications protects motor neurons and neuromuscular junctions, not only through a reduction of apoptosis and autophagy but also through the necroptosis pathway, which is significantly involved in cell death in rodent SOD1 model of ALS. Stem Cells Translational Medicine 2019;8:535-547.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/sctm.18-0223DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525562PMC
June 2019

Huntingtin associates with the actin cytoskeleton and α-actinin isoforms to influence stimulus dependent morphology changes.

PLoS One 2019 15;14(2):e0212337. Epub 2019 Feb 15.

Laboratory of Cellular Neurobiology, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America.

One response of cells to growth factor stimulus involves changes in morphology driven by the actin cytoskeleton and actin associated proteins which regulate functions such as cell adhesion, motility and in neurons, synaptic plasticity. Previous studies suggest that Huntingtin may be involved in regulating morphology however, there has been limited evidence linking endogenous Huntingtin localization or function with cytoplasmic actin in cells. We found that depletion of Huntingtin in human fibroblasts reduced adhesion and altered morphology and these phenotypes were made worse with growth factor stimulation, whereas the presence of the Huntington's Disease mutation inhibited growth factor induced changes in morphology and increased numbers of vinculin-positive focal adhesions. Huntingtin immunoreactivity localized to actin stress fibers, vinculin-positive adhesion contacts and membrane ruffles in fibroblasts. Interactome data from others has shown that Huntingtin can associate with α-actinin isoforms which bind actin filaments. Mapping studies using a cDNA encoding α-actinin-2 showed that it interacts within Huntingtin aa 399-969. Double-label immunofluorescence showed Huntingtin and α-actinin-1 co-localized to stress fibers, membrane ruffles and lamellar protrusions in fibroblasts. Proximity ligation assays confirmed a close molecular interaction between Huntingtin and α-actinin-1 in human fibroblasts and neurons. Huntingtin silencing with siRNA in fibroblasts blocked the recruitment of α-actinin-1 to membrane foci. These studies support the idea that Huntingtin is involved in regulating adhesion and actin dependent functions including those involving α-actinin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212337PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377189PMC
November 2019

Rac1 Activity Is Modulated by Huntingtin and Dysregulated in Models of Huntington's Disease.

J Huntingtons Dis 2019 ;8(1):53-69

Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA.

Background: Previous studies suggest that Huntingtin, the protein mutated in Huntington's disease (HD), is required for actin based changes in cell morphology, and undergoes stimulus induced targeting to plasma membranes where it interacts with phospholipids involved in cell signaling. The small GTPase Rac1 is a downstream target of growth factor stimulation and PI 3-kinase activity and is critical for actin dependent membrane remodeling.

Objective: To determine if Rac1 activity is impaired in HD or regulated by normal Huntingtin.

Methods: Analyses were performed in differentiated control and HD human stem cells and HD Q140/Q140 knock-in mice. Biochemical methods included SDS-PAGE, western blot, immunoprecipitation, affinity chromatography, and ELISA based Rac activity assays.

Results: Basal Rac1 activity increased following depletion of Huntingtin with Huntingtin specific siRNA in human primary fibroblasts and in human control neuron cultures. Human cells (fibroblasts, neural stem cells, and neurons) with the HD mutation failed to increase Rac1 activity in response to growth factors. Rac1 activity levels were elevated in striatum of 1.5-month-old HD Q140/Q140 mice and in primary embryonic cortical neurons from HD mice. Affinity chromatography analysis of striatal lysates showed that Huntingtin is in a complex with Rac1, p85α subunit of PI 3-kinase, and the actin bundling protein α-actinin and interacts preferentially with the GTP bound form of Rac1. The HD mutation reduced Huntingtin interaction with p85α.

Conclusions: These findings suggest that Huntingtin regulates Rac1 activity as part of a coordinated response to growth factor signaling and this function is impaired early in HD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JHD-180311DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398565PMC
March 2020

The influence of local emissions and regional air pollution transport on a European air pollution hot spot.

Environ Sci Pollut Res Int 2019 Jan 17;26(2):1675-1692. Epub 2018 Nov 17.

Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic.

The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots: Ostrava. The aim of this study was to perform an air quality comparison between an urban site (Radvanice), which has a nearby metallurgical complex, and a suburban site (Plesná) to estimate air pollution sources and determine their local and/or regional origins. Twenty-four hour PM and PM (particular matter) concentrations, detailed mass size distributions (MSDs) to distinguish the sources of the fine and coarse PM, and their chemical compositions were investigated in parallel at both sites during the winter of 2014. Positive matrix factorization (PMF) was applied to the PM and PM chemical compositions to investigate their sources. During the measurement campaign, prevailing northeastern-southwestern (NE-SW) wind directions (WDs) were recorded. Higher average PM concentration was measured in Radvanice than in Plesná, whereas PM concentrations were similar at both sites. A source apportionment analysis revealed six and five sources for PM and PM, respectively. In Radvanice, the amount of PM and the most chemical species were similar under SW and NE WD conditions. The dominant sources were industrial (43% for PM and 27% for PM), which were caused by a large metallurgical complex located to the SW, and biomass burning (25% for PM and 36% for PM). In Plesná, the concentrations of PM and all species significantly increased under NE WD conditions. Secondary inorganic aerosols were dominant, with the highest contributions deriving from the NE WD. Therefore, regional pollution transport from the industrial sector in Silesian Province (Poland) was evident. Biomass burning contributed 22% and 24% to PM and PM, respectively. The air quality in Ostrava was influenced by local sources and regional pollution transport. The issue of poor air quality in this region is complex. Therefore, international cooperation from both states (the Czech Republic and Poland) is needed to achieve a reduction in air pollution levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3670-yDOI Listing
January 2019

AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington's Disease Minipig Model.

Mol Ther 2018 09 25;26(9):2163-2177. Epub 2018 Jun 25.

Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands.

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Previously, we showed strong huntingtin reduction and prevention of neuronal dysfunction in HD rodents using an engineered microRNA targeting human huntingtin, delivered via adeno-associated virus (AAV) serotype 5 vector with a transgene encoding an engineered miRNA against HTT mRNA (AAV5-miHTT). One of the challenges of rodents as a model of neurodegenerative diseases is their relatively small brain, making successful translation to the HD patient difficult. This is particularly relevant for gene therapy approaches, where distribution achieved upon local administration into the parenchyma is likely dependent on brain size and structure. Here, we aimed to demonstrate the translation of huntingtin-lowering gene therapy to a large-animal brain. We investigated the feasibility, efficacy, and tolerability of one-time intracranial administration of AAV5-miHTT in the transgenic HD (tgHD) minipig model. We detected widespread dose-dependent distribution of AAV5-miHTT throughout the tgHD minipig brain that correlated with the engineered microRNA expression. Both human mutant huntingtin mRNA and protein were significantly reduced in all brain regions transduced by AAV5-miHTT. The combination of widespread vector distribution and extensive huntingtin lowering observed with AAV5-miHTT supports the translation of a huntingtin-lowering gene therapy for HD from preclinical studies into the clinic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2018.06.021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127509PMC
September 2018

Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research.

Int J Mol Sci 2017 Dec 13;18(12). Epub 2017 Dec 13.

Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.

Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms18122697DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751298PMC
December 2017

Artificial miRNAs Reduce Human Mutant Huntingtin Throughout the Striatum in a Transgenic Sheep Model of Huntington's Disease.

Hum Gene Ther 2018 06 23;29(6):663-673. Epub 2018 Feb 23.

1 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts.

Huntington's disease (HD) is a fatal neurodegenerative disease caused by a genetic expansion of the CAG repeat region in the huntingtin (HTT) gene. Studies in HD mouse models have shown that artificial miRNAs can reduce mutant HTT, but evidence for their effectiveness and safety in larger animals is lacking. HD transgenic sheep express the full-length human HTT with 73 CAG repeats. AAV9 was used to deliver unilaterally to HD sheep striatum an artificial miRNA targeting exon 48 of the human HTT mRNA under control of two alternative promoters: U6 or CβA. The treatment reduced human mutant (m) HTT mRNA and protein 50-80% in the striatum at 1 and 6 months post injection. Silencing was detectable in both the caudate and putamen. Levels of endogenous sheep HTT protein were not affected. There was no significant loss of neurons labeled by DARPP32 or NeuN at 6 months after treatment, and Iba1-positive microglia were detected at control levels. It is concluded that safe and effective silencing of human mHTT protein can be achieved and sustained in a large-animal brain by direct delivery of an AAV carrying an artificial miRNA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2017.199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909722PMC
June 2018

Structural and Light-Absorption Characteristics of Complex Water-Insoluble Organic Mixtures in Urban Submicrometer Aerosols.

Environ Sci Technol 2017 Aug 11;51(15):8293-8303. Epub 2017 Jul 11.

Graduate School of Environmental Studies, Nagoya University , Nagoya 464-8601, Japan.

Submicrometer aerosols in the urban atmosphere of Nagoya, Japan, were collected in late winter and early spring, and the water-insoluble organic matter (WISOM) in the samples were fractionated into six subfractions based on their polarities by using solvent and normal-phase solid-phase extractions: nonpolar (F1), low-polar (F2 and F3), and medium-polar (F4, F5, and F6) fractions. The overall structural characteristics of these subfractions were then analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and high-resolution aerosol mass spectrometry. Quantitative information related to the overall chemical characteristics of the WISOM in the different polarity fractions, including their elemental compositions, the relative abundances of different functional groups and their fragments from electron impact ionization, was obtained. These water-insoluble fractions accounted for half of the total light absorption by the extracted aerosol matter at 400 nm. The contributions of the medium-polar fractions to both the total organic carbon and light absorption by the extracts were dominant among the contributions from the six subfractions. Large molecules with aromatic and heteroatomic (O and N) groups, including charge transfer complexes, might have greatly contributed to the light absorption by the fraction F4, which is the largest fraction of the extracted water-insoluble organic matter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b01630DOI Listing
August 2017

KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients.

Proc Natl Acad Sci U S A 2017 06 22;114(23):E4676-E4685. Epub 2017 May 22.

Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114.

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1614943114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468652PMC
June 2017

Single Usage of a Kitchen Degreaser Can Alter Indoor Aerosol Composition for Days.

Environ Sci Technol 2017 Jun 10;51(11):5907-5912. Epub 2017 May 10.

Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic.

To the best of our knowledge, this study represents the first observation of multiday persistence of an indoor aerosol transformation linked to a kitchen degreaser containing monoethanol amine (MEA). MEA remaining on the cleaned surfaces and on a wiping paper towel in a trash can was able to transform ammonium sulfate and ammonium nitrate into (MEA)SO and (MEA)NO. This influence persisted for at least 60 h despite a high average ventilation rate. The influence was observed using both offline (filters, impactors, and ion chromatography analysis) and online (compact time-of-flight aerosol mass spectrometer) techniques. Substitution of ammonia in ammonium salts was observed not only in aerosol but also in particles deposited on a filter before the release of MEA. The similar influence of other amines is expected based on literature data. This influence represents a new pathway for MEA exposure of people in an indoor environment. The stabilizing effect on indoor nitrate also causes higher indoor exposure to fine nitrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b06050DOI Listing
June 2017

Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice.

J Huntingtons Dis 2016 10;5(3):249-260

Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.

Background: Mutant huntingtin (mHTT) is encoded by the Huntington's disease (HD) gene and its accumulation in the brain contributes to HD pathogenesis. Reducing mHTT levels through activation of the autophagosome-lysosomal pathway may have therapeutic benefit. Transcription factor EB (TFEB) regulates lysosome biogenesis and autophagy.

Objective: To examine if increasing TFEB protein levels in HD mouse striatum induces autophagy and influences mHTT levels.

Methods: We introduced cDNA encoding TFEB with an HA tag (TFEB-HA) under the control of neuron specific synapsin 1 promoter into the striatum of 3 month old HDQ175/Q7 mice using adeno-associated virus AAV2/9. The levels of exogenous TFEB were analyzed using qPCR and Western blot. Proteins involved in autophagy, levels of huntingtin, and striatal-enriched proteins were examined using biochemical and/or immunohistochemical methods.

Results: In HD mice expressing TFEB-HA, HA immunoreactivity distributed throughout the striatum in neuronal cell bodies and processes and preferentially in neuronal nuclei and overlapped with a loss of DARPP32 immunoreactivity. TFEB-HA mRNA and protein were detected in striatal lysates. There were increased levels of proteins involved with autophagosome/lysosome activity including LAMP-2A, LC3II, and cathepsin D and reduced levels of mutant HTT and the striatal enriched proteins DARPP32 and PDE10A. Compared to WT mice, HDQ175/Q7 mice had elevated levels of the ER stress protein GRP78/BiP and with TFEB-HA expression, increased levels of the astrocyte marker GFAP and pro-caspase 3.

Conclusion: These results suggest that TFEB expression in the striatum of HDQ175/Q7 mice stimulates autophagy and lysosome activity, and lowers mHTT, but may also increase a neuronal stress response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JHD-160211DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088406PMC
October 2016

Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice.

J Huntingtons Dis 2016 06;5(2):163-74

Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.

Background: Reducing mutant huntingtin (mHTT) in neurons may be a therapy for Huntington's disease (HD). Elevating NUB1 protein reduced mHTT levels in cell and fly models of HD through a proteasome dependent mechanism.

Objective: To examine the effects of augmenting NUB1 in HD mouse striatum on mHTT levels.

Methods: Striata of HDQ175/Q7 mice were injected at 3 months of age with recombinant AAV2/9 coding for NUB1 or GFP under the control of the neuron specific human synapsin 1 promoter and examined 6 months post-injection for levels of huntingtin, the striatal markers DARPP32 and PDE10A, the astrocyte marker GFAP, and the autophagy and mHTT aggregate marker P62 using immunolabeling of brain sections and Western blot assay of striatal subcellular fractions.

Results: By Western blot human HD brain had only one of the two variants of NUB1 present in human control brain. In striatum of WT and HD mice NUB1 was localized in medium size neurons and enriched in the nucleus of large neurons. In the striatum of NUB1 injected HD mice, there was widespread neuronal distribution of exogenous NUB1 labeling and protein levels were ∼2.5-fold endogenous levels. DARPP32 and GFAP distribution and levels were unchanged but PDE10A levels were lower in crude homogenates and P62 was increased in nuclear enriched P1 fractions. Elevating NUB1 did not change levels of full-length mHTT or the number and size of mHTT (S830) positive nuclear inclusions.

Conclusion: Findings suggest that increasing NUB1 protein in striatal neurons of HDQ175/Q7 mice in vivo may be relatively safe but is ineffective in reducing mHTT. Increased NUB1 expression in HD striatum alters PDE10A and P62 which are known to be influenced by mHTT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JHD-160195DOI Listing
June 2016

Detection of genes associated with developmental competence of bovine oocytes.

Anim Reprod Sci 2016 Mar 7;166:58-71. Epub 2016 Jan 7.

Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic.

The developmental competence of oocytes is acquired progressively during folliculogenesis and is linked to follicular size. It has been documented that oocytes originating from larger follicles exhibit a greater ability to develop to the blastocyst stage. The differences in cytoplasmic factors such as mRNA transcripts could explain the differences in oocyte developmental potential. We used bovine oligonucleotide microarrays to characterize differences between the gene expression profiles of germinal vesicle stage (GV) oocytes with greater developmental competence from medium follicles (MF) and those with less developmental competence from small follicles (SF). After normalizing the microarray data, our analysis found differences in the level of 60 transcripts (≥1.4 fold), corresponding to 49 upregulated and 11 downregulated transcripts in MF oocytes compared to SF oocytes. The gene expression data were classified according to gene ontology, the majority of the genes were associated with the regulation of transcription, translation, the cell cycle, and mitochondrial activity. A subset of 16 selected genes was validated for GV oocytes by quantitative real-time RT-PCR; significant differences (P˂0.01) were found in the level of TAF1A, MTRF1L, ATP5C1, UBL5 and MAP3K13 between the MF and SF oocytes. After maturation the transcript level remained stable for ATP5F1, BRD7, and UBL5 in both oocyte categories. The transcript level of another 13 genes substantially dropped in the MF and/or SF oocytes. It can be concluded that the developmental competence of bovine oocytes and embryos may be a quantitative trait dependent on small changes in the transcription profiles of many genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2016.01.004DOI Listing
March 2016

Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides.

Reprod Biol Endocrinol 2015 Oct 6;13:113. Epub 2015 Oct 6.

Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.

Background: The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation.

Methods: We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR.

Results: Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells.

Conclusions: The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and underexpressed genes. Both FSH and EGF-like factors overexpressed genes involved in the post-ovulatory switch in steroidogenesis and tissue remodelling. However, FSH was remarkably more efficient in the up-regulation of several specific genes essential for ovulation of matured oocytes and also genes that been reported to play an important role in maturation of cumulus-enclosed oocytes in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12958-015-0112-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596359PMC
October 2015

Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid.

J Huntingtons Dis 2015 ;4(2):187-201

Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.

Background: Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes.

Objective: We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism.

Methods: Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR.

Results: Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus.

Conclusions: These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JHD-150149DOI Listing
June 2016

Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter.

Sci Total Environ 2015 Jun 13;518-519:424-33. Epub 2015 Mar 13.

Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 2/135, 165 02, Prague 6 - Suchdol, Czech Republic.

Winter and summer measurements of organic carbon and elemental carbon (OC and EC) in PM2.5 were performed in parallel at two sites, the rural background station Košetice and the Prague-Suchdol urban background site, with a 2-h time resolution using semi-online field OC/EC analysers. Seasonal and site differences were found in the OC and EC contents of PM2.5. Overall, the highest concentrations of both OC and EC were during winter at the urban site. The average urban impact was 50% for OC and 70% for EC. The summer season gives similar concentrations of OC at both sites. However, higher concentrations of EC, caused by higher traffic, were found at the urban site with an average urban increase of 50%. Moreover, an analysis of four OC fractions depending on the volatility (OC1 - most volatile, OC4 - least volatile) and pyrolytic carbon (PC) is provided. A similar level of each OC fraction at both sites was found in summer, except for higher OC1 at urban and higher PC at the rural site. In winter, the differences between the urban and rural sites were dominated by a large increase of the OC1 fraction in comparison with the rural site. A diurnal pattern of concentration and share of OC1 and PC suggests a prevailing influence of local sources on their concentrations at the urban site in winter. The OC3 and OC4 diurnal cycles suggest their more regional or long range transport origin in both seasons. The prevalent influence of OC1 at any urban site has not been previously reported. The minimisation of semi-volatile carbon losses during semi-continuous sampling and analysis, in comparison with off-line sampling methods, is a probable reason for the observed differences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.03.029DOI Listing
June 2015

Assessment of chloroquine treatment for modulating autophagy flux in brain of WT and HD mice.

J Huntingtons Dis 2014 ;3(2):159-74

Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.

Background: Increasing mutant huntingtin (mHTT) clearance through the autophagy pathway may be a way to treat Huntington's disease (HD). Tools to manipulate and measure autophagy flux in brain in vivo are not well established.

Objective: To examine the in vivo pharmacokinetics and pharmacodynamics of the lysosomal inhibitor chloroquine (CQ) and the levels of selected autophagy markers to determine usefulness of CQ as a tool to study autophagy flux in brain.

Methods: Intraperitoneal injections of CQ were administered to WT and HD(Q175/Q175) mice. CQ levels were measured by LC-MS/MS in WT brain, muscle and blood at 4 to 24 hours after the last dose. Two methods of tissue preparation were used to detect by Western blot levels of the macroautophagy markers LC3 II and p62, the chaperone mediated autophagy receptor LAMP-2A and the late endosome/lysosomal marker RAB7.

Results: Following peripheral administration, CQ levels were highest in muscle and declined rapidly between 4 and 24 hours. In the brain, CQ levels were greater in the cortex than striatum, and levels persisted up to 24 hours post-injection. CQ treatment induced changes in LC3 II and p62 that were variable across regions and tissue preparations. HD(Q175/Q175) mice exposed to CQ had variable but diminished levels of LC3 II, p62 and LAMP-2A, and increased levels of RAB7. Higher levels of mHTT were found in the membrane compartment of CQ treated HD mice.

Conclusion: Our findings suggest that the response of brain to CQ treatment, a blocker of autophagy flux, is variable and not as robust as it has been demonstrated in vitro, suggesting that CQ treatment has limitations for modulating autophagy flux in vivo. Alternative methods, compounds, and technologies need to be developed to further investigate autophagy flux in vivo, especially in the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JHD-130081DOI Listing
September 2014

Signaling proteins in spinal parenchyma and dorsal root ganglion in rat with spinal injury-induced spasticity.

J Proteomics 2013 Oct 5;91:41-57. Epub 2013 Jul 5.

Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, v.v.i., Laboratory of Biochemistry and Molecular Biology of Germ Cells, Libechov, Czech Republic.

Unlabelled: Development of progressive muscle spasticity resulting from spinal traumatic injury can be mediated by loss of local segmental inhibition and/or by an increased sensory afferent drive with resulting exacerbated α-motoneuron activity. To identify potential contributions of neuroactive substances in the development of such spasticity state, we employed a well-defined spinal injury-evoked spasticity rat model. Signaling molecules were analyzed in the spinal parenchyma below the level of spinal injury and in the corresponding dorsal root ganglion cells using Kinex™ antibody microarrays. The results uncovered the involvement of angiogenesis and neurodegeneration pathways together with direct cross-talk mediated by several hub proteins with SH-2 domains. At 2 and 5weeks after transection, up-regulation of several proteins including CaMKIV, RONα and PKCδ as well as MAPK3/ERK1 phosphorylation was observed in the spinal ventral horns. Our results indicate that these signaling molecules and their neuronal effector systems cannot only play an important role in the initiation but also in the maintenance of spasticity states after spinal trauma. The exclusivity of specific protein changes observed in lumbar spinal parenchyma but not in dorsal root ganglia indicates that new treatment strategies should primarily target specific spinal segments to prevent or attenuate spasticity states.

Biological Significance: Development of progressive muscle spasticity and rigidity represents a serious complication associated with spinal ischemic or traumatic injury. Signaling proteins, including their phosphorylation status, were analyzed in the spinal parenchyma below the level of spinal injury and in the corresponding dorsal root ganglion cells in a rat model of spinal injury using Kinex™ antibody microarrays. The results uncovered direct protein interaction mediated cross-talk between angiogenesis and neurodegeneration pathways, which may significantly contribute to the healing process in the damaged region. Importantly, we identified several target proteins exclusively observed in the spinal lumbar ventral horns, where such proteins may not only play an important role in the initiation but also in the maintenance of spasticity states after spinal trauma. Hence, potential new treatment strategies such as gene silencing or drug treatment should primarily target spinal parenchymal sites at and around the injury epicenter and most likely employ intrathecal or targeted spinal segment-specific vector or drug delivery. We believe that this work will stimulate future translational research, ultimately leading to the improvement of quality of life of patients with spinal traumatic injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2013.06.028DOI Listing
October 2013