Publications by authors named "Peter G R Burke"

24 Publications

  • Page 1 of 1

Effect of upper airway fat on tongue dilation during inspiration in awake people with obstructive sleep apnea.

Sleep 2021 Jul 29. Epub 2021 Jul 29.

Neuroscience Research Australia, Sydney, New South Wales, Australia.

Study Objectives: To investigate the effect of upper airway fat composition on tongue inspiratory movement and obstructive sleep apnea (OSA).

Methods: Participants without or with untreated OSA underwent a 3T magnetic resonance imaging (MRI) scan. Anatomical measurements were obtained from T2-weighted images. Mid-sagittal inspiratory tongue movements were imaged using tagged MRI during wakefulness. Tissue volumes and percentages of fat were quantified using an mDIXON scan.

Results: 40 predominantly overweight participants with OSA were compared to 10 predominantly normal weight controls. After adjusting for age, BMI and gender, the percentage of fat in the tongue was not different between groups (ANCOVA, P=0.45), but apnoeic patients had a greater tongue volume (ANCOVA, P=0.025). After adjusting for age, BMI and gender, higher OSA severity was associated with larger whole tongue volume (r=0.51, P<0.001), and greater dilatory motion of the anterior horizontal tongue compartment (r=-0.33, P=0.023), but not with upper airway fat percentage. Higher tongue fat percentage was associated with higher BMI and older age (Spearman r=0.43, P=0.002, and r=0.44, P=0.001, respectively), but not with inspiratory tongue movements. Greater inspiratory tongue movement was associated with larger tongue volume (e.g. horizontal posterior compartment, r=-0.44, P=0.002) and smaller nasopharyngeal airway (e.g. oblique compartment, r=0.29, P=0.040).

Conclusions: Larger tongue volume and a smaller nasopharynx are associated with increased inspiratory tongue dilation during wakefulness in people with and without OSA. This compensatory response was not influenced by higher tongue fat content. Whether this is also true in more obese patient populations requires further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsab192DOI Listing
July 2021

Augmented Respiratory-Sympathetic Coupling and Hemodynamic Response to Acute Mild Hypoxia in Female Rodents With Chronic Kidney Disease.

Front Physiol 2021 25;12:623599. Epub 2021 May 25.

Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.

Carotid body feedback and hypoxia may serve to enhance respiratory-sympathetic nerve coupling (respSNA) and act as a driver of increased blood pressure. Using the Lewis polycystic kidney (LPK) rat model of chronic kidney disease, we examined respSNA in adult female rodents with CKD and their response to acute hypoxia or hypercapnia compared to Lewis control animals. Under urethane anesthesia, phrenic nerve activity, splanchnic sympathetic nerve activity (sSNA), and renal sympathetic nerve activity (rSNA) were recorded under baseline conditions and during mild hypoxic or hypercapnic challenges. At baseline, tonic SNA and blood pressure were greater in female LPK rats versus Lewis rats (all < 0.05) and respSNA was at least two-fold larger [area under the curve (AUC), sSNA: 7.8 ± 1.1 vs. 3.4 ± 0.7 μV s, rSNA: 11.5 ± 3 vs. 4.8 ± 0.7 μV s, LPK vs. Lewis, both < 0.05]. Mild hypoxia produced a larger pressure response in LPK [Δ mean arterial pressure (MAP) 30 ± 6 vs. 12 ± 6 mmHg] and augmented respSNA (ΔAUC, sSNA: 8.9 ± 3.4 vs. 2 ± 0.7 μV s, rSNA: 6.1 ± 1.2 vs. 3.1 ± 0.7 μV s, LPK vs. Lewis, all ≤ 0.05). In contrast, central chemoreceptor stimulation produced comparable changes in blood pressure and respSNA (ΔMAP 13 ± 3 vs. 9 ± 5 mmHg; respSNA ΔAUC, sSNA: 2.5 ± 1 vs. 1.3 ± 0.7 μV s, rSNA: 4.2 ± 0.9 vs. 3.5 ± 1.4 μV s, LPK vs. Lewis, all > 0.05). These results demonstrate that female rats with CKD exhibit heightened respSNA coupling at baseline that is further augmented by mild hypoxia, and not by hypercapnia. This mechanism may be a contributing driver of hypertension in this animal model of CKD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2021.623599DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185289PMC
May 2021

Mandibular advancement splint response is associated with the pterygomandibular raphe.

Sleep 2021 04;44(4)

Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.

Study Objectives: To investigate whether the presence of tendinous PMR could predict treatment outcome and how it affects lateral wall mechanical properties. Mandibular advancement increases the lateral dimensions of the nasopharyngeal airway via a direct connection from the airway to the ramus of the mandible. The anatomical structure in this region is the pterygomandibular raphe (PMR), but a tendinous component is not always present. Whether tendon presence influences treatment outcome is unknown.

Methods: In total, 105 participants with obstructive sleep apnea completed detailed anatomical magnetic resonance imaging with and without mandibular advancement. The study design was case-control. Variables were compared between participants with and without the tendon present.

Results: The amount of maximum mandibular advancement decreased when pterygomandibular tendon was present (4.0 ± 1.2 mm present versus 4.6 ± 1.4 mm absent, p = 0.04). PMR tendon-absent participants had a lower posttreatment apnea hypopnea index (16 ± 12 events/hour tendon present versus 9 ± 9 events/hour absent, p = 0.007) and were more likely to have complete response (63% versus 36%, p = 0.02). However, tendon-absent participants were more likely to not complete the study (χ 2 (3) = 10.578, p = 0.014). Tendon-absent participants had a greater increase in midline anteroposterior airway diameter (1.6 ± 1.7 mm versus 0.6 ± 2.3 mm, p = 0.04).

Conclusion: When PMR tendon is absent, treatment response and amount of maximum advancement improve, possibly at the expense of reduced splint tolerability. Tendon presence may help predict a group less likely to respond to mandibular advancement splint therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsaa222DOI Listing
April 2021

Influence of mandibular advancement on tongue dilatory movement during wakefulness and how this is related to oral appliance therapy outcome for obstructive sleep apnea.

Sleep 2021 03;44(3)

Neuroscience Research Australia, Sydney, New South Wales, Australia.

Study Objectives: To characterize how mandibular advancement splint (MAS) alters inspiratory tongue movement in people with obstructive sleep apnea (OSA) during wakefulness and whether this is associated with MAS treatment outcome.

Methods: A total of 87 untreated OSA participants (20 women, apnea-hypopnea index (AHI) 7-102 events/h, aged 19-76 years) underwent a 3T MRI with a MAS in situ. Mid-sagittal tagged images quantified inspiratory tongue movement with the mandible in a neutral position and advanced to 70% of the maximum. Movement was quantified with harmonic phase methods. Treatment outcome was determined after at least 9 weeks of therapy.

Results: A total of 72 participants completed the study: 34 were responders (AHI < 5 or AHI ≤ 10events/h with >50% reduction in AHI), 9 were partial responders (>50% reduction in AHI but AHI > 10 events/h), and 29 nonresponders (change in AHI <50% and AHI ≥ 10 events/h). About 62% (45/72) of participants had minimal inspiratory tongue movement (<1 mm) in the neutral position, and this increased to 72% (52/72) after advancing the mandible. Mandibular advancement altered inspiratory tongue movement pattern for 40% (29/72) of participants. When tongue dilatory patterns altered with advancement, 80% (4/5) of those who changed to a counterproductive movement pattern (posterior movement >1 mm) were nonresponders and 71% (5/7) of those who changed to beneficial (anterior movement >1 mm) were partial or complete responders.

Conclusions: The mandibular advancement action on upper airway dilator muscles differs between individuals. When mandibular advancement alters inspiratory tongue movement, therapeutic response to MAS therapy was more common among those who convert to a beneficial movement pattern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsaa196DOI Listing
March 2021

Regional respiratory movement of the tongue is coordinated during wakefulness and is larger in severe obstructive sleep apnoea.

J Physiol 2020 02 16;598(3):581-597. Epub 2020 Jan 16.

Neuroscience Research Australia, Sydney, New South Wales, Australia.

Key Points: Coordination of the neuromuscular compartments of the tongue is critical to maintain airway patency. Currently, little is known about the extent to which regional tongue dilatory motion is coordinated in heathy people and if this coordination is altered in people with obstructive sleep apnoea (OSA). We show that regional tongue muscle coordination in people with and without OSA during wakefulness is associated with effective airway dilatation during inspiration, using dynamic tagged magnetic resonance imaging. The maximal movement of four compartments of the tongue were correlated and occurred concurrently towards the end of inspiration. If tongue movement was observed, people with more severe OSA had larger movement and moved more compartments (up to four) to maintain airway patency, while people without OSA moved only one compartment. These results suggest that airway patency is preserved during wakefulness in people with OSA via active dilatory movement of the genioglossus.

Abstract: Maintaining airway patency when supine requires neural drive to the genioglossus horizontal and oblique neuromuscular compartments (superior fan-like and inferior horizontal genioglossus, regions that are innervated by different branches of the hypoglossal nerve) to be coordinated during breathing, but it is unknown if this coordination is altered in obstructive sleep apnoea (OSA). This study aimed to assess coordination of airway dilatory motion across four mid-sagittal tongue compartments during inspiration (i.e. anterior and posterior of the horizontal and oblique compartments), and compare it in controls and OSA patients. Fifty-four participants (12 women, aged 20-73 years) underwent dynamic 'tagged' magnetic resonance imaging during wakefulness. Ten participants had no OSA [apnoea hypopnoea index (AHI) < 5 events h ], 14 had mild OSA (5 < AHI ≤ 15 events h ), 12 had moderate OSA (15 < AHI ≤ 30 events h ) and 18 had severe OSA (AHI > 30 events h ). A higher AHI was associated with a greater anterior movement of the anterior and posterior horizontal compartments (Spearman, r = -0.32, P = 0.02 for both), but not in the oblique compartments. If movement was observed, higher OSA severity was associated with an anterior movement of a greater number of compartments. Controls only moved the posterior horizontal compartment while the anterior horizontal compartment also moved in OSA participants. Oblique compartments moved only in people with severe OSA. The maximal anterior inspiratory movement of the four compartments was highly correlated (Spearman, P < 0.001) and occurred concurrently. The posterior horizontal compartment had the greatest anterior motion. These results suggest that airway patency is preserved during wakefulness in people with OSA via active dilatory movement of the genioglossus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP278769DOI Listing
February 2020

Upper airway collapsibility measured using a simple wakefulness test closely relates to the pharyngeal critical closing pressure during sleep in obstructive sleep apnea.

Sleep 2019 07;42(7)

Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia.

Study Objectives: A collapsible or crowded pharyngeal airway is the main cause of obstructive sleep apnea (OSA). However, quantification of airway collapsibility during sleep (Pcrit) is not clinically feasible. The primary aim of this study was to compare upper airway collapsibility using a simple wakefulness test with Pcrit during sleep.

Methods: Participants with OSA were instrumented with a nasal mask, pneumotachograph and two pressure sensors, one at the choanae (PCHO), the other just above the epiglottis (PEPI). Approximately 60 brief (250 ms) pulses of negative airway pressure (~ -12 cmH2O at the mask) were delivered in early inspiration during wakefulness to measure the upper airway collapsibility index (UACI). Transient reductions in the continuous positive airway pressure (CPAP) holding pressure were then performed during sleep to determine Pcrit. In a subset of participants, the optimal number of replicate trials required to calculate the UACI was assessed.

Results: The UACI (39 ± 24 mean ± SD; range = 0%-87%) and Pcrit (-0.11 ± 2.5; range: -4 to +5 cmH2O) were quantified in 34 middle-aged people (9 female) with varying OSA severity (apnea-hypopnea index range = 5-92 events/h). The UACI at a mask pressure of approximately -12 cmH2O positively correlated with Pcrit (r = 0.8; p < 0.001) and could be quantified reliably with as few as 10 replicate trials. The UACI performed well at discriminating individuals with subatmospheric Pcrit values [receiver operating characteristic curve analysis area under the curve = 0.9 (0.8-1), p < 0.001].

Conclusions: These findings indicate that a simple wakefulness test may be useful to estimate the extent of upper airway anatomical impairment during sleep in people with OSA to direct targeted non-CPAP therapies for OSA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsz080DOI Listing
July 2019

Somatostatin 2 Receptors in the Spinal Cord Tonically Restrain Thermogenic, Cardiac and Other Sympathetic Outflows.

Front Neurosci 2019 20;13:121. Epub 2019 Feb 20.

Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.

The anatomical and functional characterization of somatostatin (SST) and somatostatin receptors (SSTRs) within the spinal cord have been focused in the dorsal horn, specifically in relation to sensory afferent processing. However, SST is also present within the intermediolateral cell column (IML), which contains sympathetic preganglionic neurons (SPN). We investigated the distribution of SSTR2 within the thoracic spinal cord and show that SSTR2A and SSTR2B are expressed in the dorsal horn and on SPN and non-SPN in or near the IML. The effects of activating spinal SSTR and SSTR2 were sympathoinhibition, hypotension, bradycardia, as well as decreases in interscapular brown adipose tissue temperature and expired CO, in keeping with the well-described inhibitory effects of activating SSTR receptors. These data indicate that spinal SST can decrease sympathetic, cardiovascular and thermogenic activities. Unexpectedly blockade of SSTR2 revealed that SST tonically mantains sympathetic, cardiovascular and thermogenic functions, as activity in all measured parameters increased. In addition, high doses of two antagonists evoked biphasic responses in sympathetic and cardiovascular outflows where the initial excitatory effects were followed by profound but transient falls in sympathetic nerve activity, heart rate and blood pressure. These latter effects, together with our findings that SSTR2A are expressed on GABAergic, presumed interneurons, are consistent with the idea that SST2R tonically influence a diffuse spinal GABAergic network that regulates the sympathetic cardiovascular outflow. As described here and elsewhere the source of tonically released spinal SST may be of intra- and/or supra-spinal origin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnins.2019.00121DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391348PMC
February 2019

Dose-dependent effects of mandibular advancement on upper airway collapsibility and muscle function in obstructive sleep apnea.

Sleep 2019 06;42(6)

Sleep and Breathing Group, Neuroscience Research Australia (NeuRA), Randwick, Australia.

Study Objectives: Mandibular advancement splints (MAS) are the leading treatment alternative to continuous positive airway pressure (CPAP) for obstructive sleep apnea (OSA). However, not all patients experience clinical benefit and treatment prediction remains challenging. Understanding the effects of mandibular advancement on pharyngeal collapsibility and muscle function may provide valuable information on the mechanisms of MAS, and thereby help to develop novel approaches for patient selection. Thus, we aimed to determine dose-dependent effects of mandibular advancement on pharyngeal collapsibility and muscle function concurrently in OSA patients undergoing MAS therapy.

Methods: Twelve (11 male) MAS-naïve patients underwent a detailed physiology sleep study (polysomnography) to quantify pharyngeal collapsibility (PCRIT), pharyngeal muscle responsiveness to negative pharyngeal pressure (via genioglossus intramuscular electromyography and an epiglottic pressure sensor) and effectiveness to restore airflow and minute ventilation (Vi) after 1-minute transient CPAP reductions (induced airflow-limitation) at three mandibular advancement positions: 0% (habitual bite), 50% and 100% of the maximum comfortable mandibular advancement. Standard clinical polysomnography after MAS therapy optimization was performed to determine treatment outcome.

Results: Overall, participants were obese with severe OSA (mean ± SD: BMI = 31 ± 4 kg/m2, apnea-hypopnea index [AHI] = 33 ± 14 events/hour). PCRIT decreased with mandibular advancement in a dose-dependent manner (1.8 ± 3.9 vs. -0.9 ± 2.9 vs. -4.0 ± 3.6 cmH2O; p < 0.001). There was no systematic change in genioglossus muscle responsiveness (p = 0.09) or effectiveness to restore peak airflow (p = 0.4) or Vi (p = 0.7) with mandibular advancement.

Conclusions: Mandibular advancement reduces pharyngeal collapsibility in a dose-dependent manner without systematically changing genioglossus muscle function in a predominantly obese and severe OSA population. This indicates that the primary mode of action of MAS therapy is via improvement in passive pharyngeal anatomy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsz049DOI Listing
June 2019

Respiratory sympathetic modulation is augmented in chronic kidney disease.

Respir Physiol Neurobiol 2019 04 2;262:57-66. Epub 2019 Feb 2.

Department of Biomedical Sciences, Macquarie University, Australia. Electronic address:

Respiratory modulation of sympathetic nerve activity (respSNA) was studied in a hypertensive rodent model of chronic kidney disease (CKD) using Lewis Polycystic Kidney (LPK) rats and Lewis controls. In adult animals under in vivo anaesthetised conditions (n = 8-10/strain), respiratory modulation of splanchnic and renal nerve activity was compared under control conditions, and during peripheral (hypoxia), and central, chemoreceptor (hypercapnia) challenge. RespSNA was increased in the LPK vs. Lewis (area under curve (AUC) splanchnic and renal: 8.7 ± 1.1 vs. 3.5 ± 0.5 and 10.6 ± 1.1 vs. 7.1 ± 0.2 μV.s, respectively, P < 0.05). Hypoxia and hypercapnia increased respSNA in both strains but the magnitude of the response was greater in LPK, particularly in response to hypoxia. In juvenile animals studied using a working heart brainstem preparation (n = 7-10/strain), increased respSNA was evident in the LPK (thoracic SNA, AUC: 0.86 ± 0.1 vs. 0.42 ± 0.1 μV.s, P < 0.05), and activation of peripheral chemoreceptors (NaCN) again drove a larger increase in respSNA in the LPK with no difference in the response to hypercapnia. Amplified respSNA occurs in CKD and may contribute to the development of hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2019.02.001DOI Listing
April 2019

Somatostatin 2 Receptor Activation in the Rostral Ventrolateral Medulla Does Not Mediate the Decompensatory Phase of Haemorrhage.

Shock 2018 09;50(3):331-338

Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.

Decompensation, a critical phase in the response to hemorrhage, is characterized by profound sympathoinhibition and the overriding of baroreflex mediated compensation. As sympathoexcitatory neurons of the rostral ventrolateral medulla (RVLM) maintain vasomotor tone and are essential for sympathetic baroreceptor reflex function, the RVLM is the likely mediator. However, how decompensation occurs is a mystery. Our previous work demonstrated that the inhibitory neuropeptide somatostatin (SST), evokes potent sympathoinhibition. Here we test the hypothesis that, in response to hypovolemia, SST in the RVLM evokes sympathoinhibition, driving decompensation and suppressing baroreflex compensation. We evaluated neuronal activation at sites that contain SST mRNA and project to the RVLM and, in SST2A expressing neurons in the RVLM. We determined the effects on cardiovascular and sympathetic responses to haemorrhage, of bilateral blockade of SST2 receptors in both the RVLM and A1 regions. Haemorrhage in conscious rats evoked c-Fos immunoreactivity in the amygdala, periaqueductal gray, and parabrachial nuclei, regions previously associated with hemorrhage, shown to contain SST and project to the RVLM. Although c-Fos labeling was found throughout the ventrolateral medulla, only a small subset of RVLM SST2A receptor expressing neurons were activated, consistent with the idea that these neurons are inhibited during hemorrhage. However, SST2 receptor antagonists bilaterally injected in the RVLM or the A1 region did not affect the decompensation response to hemorrhage. Thus somatostatin in the RVLM does not mediate decompensation. The physiological role associated with somatostatin-induced sympathoinhibition in the RVLM together with the central mechanisms responsible for decompensation remain elusive.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000001011DOI Listing
September 2018

Polysialic Acid Regulates Sympathetic Outflow by Facilitating Information Transfer within the Nucleus of the Solitary Tract.

J Neurosci 2017 07 2;37(27):6558-6574. Epub 2017 Jun 2.

Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, 2109 New South Wales, Australia,

Expression of the large extracellular glycan, polysialic acid (polySia), is restricted in the adult, to brain regions exhibiting high levels of plasticity or remodeling, including the hippocampus, prefrontal cortex, and the nucleus of the solitary tract (NTS). The NTS, located in the dorsal brainstem, receives constant viscerosensory afferent traffic as well as input from central regions controlling sympathetic nerve activity, respiration, gastrointestinal functions, hormonal release, and behavior. Our aims were to determine the ultrastructural location of polySia in the NTS and the functional effects of enzymatic removal of polySia, both and polySia immunoreactivity was found throughout the adult rat NTS. Electron microscopy demonstrated polySia at sites that influence neurotransmission: the extracellular space, fine astrocytic processes, and neuronal terminals. Removing polySia from the NTS had functional consequences. Whole-cell electrophysiological recordings revealed altered intrinsic membrane properties, enhancing voltage-gated K currents and increasing intracellular Ca Viscerosensory afferent processing was also disrupted, dampening low-frequency excitatory input and potentiating high-frequency sustained currents at second-order neurons. Removal of polySia in the NTS of anesthetized rats increased sympathetic nerve activity, whereas functionally related enzymes that do not alter polySia expression had little effect. These data indicate that polySia is required for the normal transmission of information through the NTS and that changes in its expression alter sympathetic outflow. polySia is abundant in multiple but discrete brain regions, including sensory nuclei, in both the adult rat and human, where it may regulate neuronal function by mechanisms identified here. All cells are coated in glycans (sugars) existing predominantly as glycolipids, proteoglycans, or glycoproteins formed by the most complex form of posttranslational modification, glycosylation. How these glycans influence brain function is only now beginning to be elucidated. The adult nucleus of the solitary tract has abundant polysialic acid (polySia) and is a major site of integration, receiving viscerosensory information which controls critical homeostatic functions. Our data reveal that polySia is a determinant of neuronal behavior and excitatory transmission in the nucleus of the solitary tract, regulating sympathetic nerve activity. polySia is abundantly expressed at distinct brain sites in adult, including major sensory nuclei, suggesting that sensory transmission may also be influenced via mechanisms described here. These findings hint at the importance of elucidating how other glycans influence neural function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.0200-17.2017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596603PMC
July 2017

Proton detection and breathing regulation by the retrotrapezoid nucleus.

J Physiol 2016 Mar 19;594(6):1529-51. Epub 2016 Feb 19.

Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA.

We discuss recent evidence which suggests that the principal central respiratory chemoreceptors are located within the retrotrapezoid nucleus (RTN) and that RTN neurons are directly sensitive to [H(+) ]. RTN neurons are glutamatergic. In vitro, their activation by [H(+) ] requires expression of a proton-activated G protein-coupled receptor (GPR4) and a proton-modulated potassium channel (TASK-2) whose transcripts are undetectable in astrocytes and the rest of the lower brainstem respiratory network. The pH response of RTN neurons is modulated by surrounding astrocytes but genetic deletion of RTN neurons or deletion of both GPR4 and TASK-2 virtually eliminates the central respiratory chemoreflex. Thus, although this reflex is regulated by innumerable brain pathways, it seems to operate predominantly by modulating the discharge rate of RTN neurons, and the activation of RTN neurons by hypercapnia may ultimately derive from their intrinsic pH sensitivity. RTN neurons increase lung ventilation by stimulating multiple aspects of breathing simultaneously. They stimulate breathing about equally during quiet wake and non-rapid eye movement (REM) sleep, and to a lesser degree during REM sleep. The activity of RTN neurons is regulated by inhibitory feedback and by excitatory inputs, notably from the carotid bodies. The latter input operates during normo- or hypercapnia but fails to activate RTN neurons under hypocapnic conditions. RTN inhibition probably limits the degree of hyperventilation produced by hypocapnic hypoxia. RTN neurons are also activated by inputs from serotonergic neurons and hypothalamic neurons. The absence of RTN neurons probably underlies the sleep apnoea and lack of chemoreflex that characterize congenital central hypoventilation syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP271480DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799966PMC
March 2016

Tonically Active cAMP-Dependent Signaling in the Ventrolateral Medulla Regulates Sympathetic and Cardiac Vagal Outflows.

J Pharmacol Exp Ther 2016 Feb 17;356(2):424-33. Epub 2015 Nov 17.

Dept Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia

The ventrolateral medulla contains presympathetic and vagal preganglionic neurons that control vasomotor and cardiac vagal tone, respectively. G protein-coupled receptors influence the activity of these neurons. Gα s activates adenylyl cyclases, which drive cyclic adenosine monophosphate (cAMP)-dependent targets: protein kinase A (PKA), the exchange protein activated by cAMP (EPAC), and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. The aim was to determine the cardiovascular effects of activating and inhibiting these targets at presympathetic and cardiac vagal preganglionic neurons. Urethane-anesthetized rats were instrumented to measure splanchnic sympathetic nerve activity (sSNA), arterial pressure (AP), heart rate (HR), as well as baroreceptor and somatosympathetic reflex function, or were spinally transected and instrumented to measure HR, AP, and cardiac baroreflex function. All drugs were injected bilaterally. In the rostral ventrolateral medulla (RVLM), Sp-cAMPs and 8-Br-cAMP, which activate PKA, as well as 8-pCPT, which activates EPAC, increased sSNA, AP, and HR. Sp-cAMPs also facilitated the reflexes tested. Sp-cAMPs also increased cardiac vagal drive and facilitated cardiac baroreflex sensitivity. Blockade of PKA, using Rp-cAMPs or H-89 in the RVLM, increased sSNA, AP, and HR and increased HR when cardiac vagal preganglionic neurons were targeted. Brefeldin A, which inhibits EPAC, and ZD7288, which inhibits HCN channels, each alone had no effect. Cumulative, sequential blockade of all three inhibitors resulted in sympathoinhibition. The major findings indicate that Gα s-linked receptors in the ventral medulla can be recruited to drive both sympathetic and parasympathetic outflows and that tonically active PKA-dependent signaling contributes to the maintenance of both sympathetic vasomotor and cardiac vagal tone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.115.227488DOI Listing
February 2016

Selective optogenetic stimulation of the retrotrapezoid nucleus in sleeping rats activates breathing without changing blood pressure or causing arousal or sighs.

J Appl Physiol (1985) 2015 Jun 9;118(12):1491-501. Epub 2015 Apr 9.

Department of Pharmacology, University of Virginia, Charlottesville, Virginia; and

Combined optogenetic activation of the retrotrapezoid nucleus (RTN; a CO2/proton-activated brainstem nucleus) with nearby catecholaminergic neurons (C1 and A5), or selective C1 neuron stimulation, increases blood pressure (BP) and breathing, causes arousal from non-rapid eye movement (non-REM) sleep, and triggers sighs. Here we wished to determine which of these physiological responses are elicited when RTN neurons are selectively activated. The left rostral RTN and nearby A5 neurons were transduced with channelrhodopsin-2 (ChR2(+)) using a lentiviral vector. Very few C1 cells were transduced. BP, breathing, EEG, and neck EMG were monitored. During non-REM sleep, photostimulation of ChR2(+) neurons (20s, 2-20 Hz) instantly increased V̇e without changing BP (13 rats). V̇e and BP were unaffected by light in nine control (ChR2(-)) rats. Photostimulation produced no sighs and caused arousal (EEG desynchronization) more frequently in ChR2(+) than ChR2(-) rats (62 ± 5% of trials vs. 25 ± 2%; P < 0.0001). Six ChR2(+) rats then received spinal injections of a saporin-based toxin that spared RTN neurons but destroyed surrounding catecholaminergic neurons. Photostimulation of the ChR2(+) neurons produced the same ventilatory stimulation before and after lesion, but arousal was no longer elicited. Overall (all ChR2(+) rats combined), ΔV̇e correlated with the number of ChR2(+) RTN neurons whereas arousal probability correlated with the number of ChR2(+) catecholaminergic neurons. In conclusion, RTN neurons activate breathing powerfully and, unlike the C1 cells, have minimal effects on BP and have a weak arousal capability at best. A5 neuron stimulation produces little effect on breathing and BP but does appear to facilitate arousal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00164.2015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469924PMC
June 2015

State-dependent control of breathing by the retrotrapezoid nucleus.

J Physiol 2015 Jul 22;593(13):2909-26. Epub 2015 May 22.

Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA.

Key Points: This study explores the state dependence of the hypercapnic ventilatory reflex (HCVR). We simulated an instantaneous increase or decrease of central chemoreceptor activity by activating or inhibiting the retrotrapezoid nucleus (RTN) by optogenetics in conscious rats. During quiet wake or non-REM sleep, hypercapnia increased both breathing frequency (fR ) and tidal volume (VT ) whereas, in REM sleep, hypercapnia increased VT exclusively. Optogenetic inhibition of RTN reduced VT in all sleep-wake states, but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Phasic RTN stimulation produced active expiration and reduced early expiratory airflow (i.e. increased upper airway resistance) only during wake. We conclude that the HCVR is highly state-dependent. The HCVR is reduced during REM sleep because fR is no longer under chemoreceptor control and thus could explain why central sleep apnoea is less frequent in REM sleep.

Abstract: Breathing has different characteristics during quiet wake, non-REM or REM sleep, including variable dependence on PCO2. We investigated whether the retrotrapezoid nucleus (RTN), a proton-sensitive structure that mediates a large portion of the hypercapnic ventilatory reflex, regulates breathing differently during sleep vs. wake. Electroencephalogram, neck electromyogram, blood pressure, respiratory frequency (fR ) and tidal volume (VT ) were recorded in 28 conscious adult male Sprague-Dawley rats. Optogenetic stimulation of RTN with channelrhodopsin-2, or inhibition with archaerhodopsin, simulated an instantaneous increase or decrease of central chemoreceptor activity. Both opsins were delivered with PRSX8-promoter-containing lentiviral vectors. RTN and catecholaminergic neurons were transduced. During quiet wake or non-REM sleep, hypercapnia (3 or 6% FI,CO2 ) increased both fR and VT whereas, in REM sleep, hypercapnia increased VT exclusively. RTN inhibition always reduced VT but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Blood pressure was unaffected by either stimulation or inhibition. Except in REM sleep, phasic RTN stimulation entrained and shortened the breathing cycle by selectively shortening the post-inspiratory phase. Phasic stimulation also produced active expiration and reduced early expiratory airflow but only during wake. VT is always regulated by RTN and CO2 but fR is regulated by CO2 and RTN only when the brainstem pattern generator is in autorhythmic mode (anaesthesia, non-REM sleep, quiet wake). The reduced contribution of RTN to breathing during REM sleep could explain why certain central apnoeas are less frequent during this sleep stage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP270053DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506188PMC
July 2015

Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis.

J Neurosci 2015 Jan;35(2):527-43

Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, and

In conscious mammals, hypoxia or hypercapnia stimulates breathing while theoretically exerting opposite effects on central respiratory chemoreceptors (CRCs). We tested this theory by examining how hypoxia and hypercapnia change the activity of the retrotrapezoid nucleus (RTN), a putative CRC and chemoreflex integrator. Archaerhodopsin-(Arch)-transduced RTN neurons were reversibly silenced by light in anesthetized rats. We bilaterally transduced RTN and nearby C1 neurons with Arch (PRSx8-ArchT-EYFP-LVV) and measured the cardiorespiratory consequences of Arch activation (10 s) in conscious rats during normoxia, hypoxia, or hyperoxia. RTN photoinhibition reduced breathing equally during non-REM sleep and quiet wake. Compared with normoxia, the breathing frequency reduction (Δf(R)) was larger in hyperoxia (65% FiO2), smaller in 15% FiO2, and absent in 12% FiO2. Tidal volume changes (ΔV(T)) followed the same trend. The effect of hypoxia on Δf(R) was not arousal-dependent but was reversed by reacidifying the blood (acetazolamide; 3% FiCO2). Δf(R) was highly correlated with arterial pH up to arterial pH (pHa) 7.5 with no frequency inhibition occurring above pHa 7.53. Blood pressure was minimally reduced suggesting that C1 neurons were very modestly inhibited. In conclusion, RTN neurons regulate eupneic breathing about equally during both sleep and wake. RTN neurons are the first putative CRCs demonstrably silenced by hypocapnic hypoxia in conscious mammals. RTN neurons are silent above pHa 7.5 and increasingly active below this value. During hyperoxia, RTN activation maintains breathing despite the inactivity of the carotid bodies. Finally, during hypocapnic hypoxia, carotid body stimulation increases breathing frequency via pathways that bypass RTN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.2923-14.2015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293409PMC
January 2015

Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats.

Am J Respir Crit Care Med 2014 Dec;190(11):1301-10

Department of Pharmacology, University of Virginia, Charlottesville, Virginia.

Rationale: The rostral ventrolateral medulla (RVLM) contains central respiratory chemoreceptors (retrotrapezoid nucleus, RTN) and the sympathoexcitatory, hypoxia-responsive C1 neurons. Simultaneous optogenetic stimulation of these neurons produces vigorous cardiorespiratory stimulation, sighing, and arousal from non-REM sleep.

Objectives: To identify the effects that result from selectively stimulating C1 cells.

Methods: A Cre-dependent vector expressing channelrhodopsin 2 (ChR2) fused with enhanced yellow fluorescent protein or mCherry was injected into the RVLM of tyrosine hydroxylase (TH)-Cre rats. The response of ChR2-transduced neurons to light was examined in anesthetized rats. ChR2-transduced C1 neurons were photoactivated in conscious rats while EEG, neck muscle EMG, blood pressure (BP), and breathing were recorded.

Measurements And Main Results: Most ChR2-expressing neurons (95%) contained C1 neuron markers and innervated the spinal cord. RTN neurons were not transduced. While the rats were under anesthesia, the C1 cells were faithfully activated by each light pulse up to 40 Hz. During quiet resting and non-REM sleep, C1 cell stimulation (20 s, 2-20 Hz) increased BP and respiratory frequency and produced sighs and arousal from non-REM sleep. Arousal was frequency-dependent (85% probability at 20 Hz). Stimulation during REM sleep increased BP, but had no effect on EEG or breathing. C1 cell-mediated breathing stimulation was occluded by hypoxia (12% FIO2), but was unchanged by 6% FiCO2.

Conclusions: C1 cell stimulation reproduces most effects of acute hypoxia, specifically cardiorespiratory stimulation, sighs, and arousal. C1 cell activation likely contributes to the sleep disruption and adverse autonomic consequences of sleep apnea. During hypoxia (awake) or REM sleep, C1 cell stimulation increases BP but no longer stimulates breathing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201407-1262OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315817PMC
December 2014

C1 neurons: the body's EMTs.

Am J Physiol Regul Integr Comp Physiol 2013 Aug 22;305(3):R187-204. Epub 2013 May 22.

Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-0735, USA.

The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00054.2013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743001PMC
August 2013

Tyrosine hydroxylase phosphorylation in catecholaminergic brain regions: a marker of activation following acute hypotension and glucoprivation.

PLoS One 2012 29;7(11):e50535. Epub 2012 Nov 29.

The Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia.

The expression of c-Fos defines brain regions activated by the stressors hypotension and glucoprivation however, whether this identifies all brain sites involved is unknown. Furthermore, the neurochemicals that delineate these regions, or are utilized in them when responding to these stressors remain undefined. Conscious rats were subjected to hypotension, glucoprivation or vehicle for 30, 60 or 120 min and changes in the phosphorylation of serine residues 19, 31 and 40 in the biosynthetic enzyme, tyrosine hydroxylase (TH), the activity of TH and/or, the expression of c-Fos were determined, in up to ten brain regions simultaneously that contain catecholaminergic cell bodies and/or terminals: A1, A2, caudal C1, rostral C1, A6, A8/9, A10, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Glucoprivation evoked phosphorylation changes in A1, caudal C1, rostral C1 and nucleus accumbens whereas hypotension evoked changes A1, caudal C1, rostral C1, A6, A8/9, A10 and medial prefrontal cortex 30 min post stimulus whereas few changes were evident at 60 min. Although increases in pSer19, indicative of depolarization, were seen in sites where c-Fos was evoked, phosphorylation changes were a sensitive measure of activation in A8/9 and A10 regions that did not express c-Fos and in the prefrontal cortex that contains only catecholaminergic terminals. Specific patterns of serine residue phosphorylation were detected, dependent upon the stimulus and brain region, suggesting activation of distinct signaling cascades. Hypotension evoked a reduction in phosphorylation in A1 suggestive of reduced kinase activity. TH activity was increased, indicating synthesis of TH, in regions where pSer31 alone was increased (prefrontal cortex) or in conjunction with pSer40 (caudal C1). Thus, changes in phosphorylation of serine residues in TH provide a highly sensitive measure of activity, cellular signaling and catecholamine utilization in catecholaminergic brain regions, in the short term, in response to hypotension and glucoprivation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050535PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510060PMC
May 2013

Patterning of somatosympathetic reflexes reveals nonuniform organization of presympathetic drive from C1 and non-C1 RVLM neurons.

Am J Physiol Regul Integr Comp Physiol 2011 Oct 27;301(4):R1112-22. Epub 2011 Jul 27.

Australian School of Advanced Medicine, Macquarie University, Sydney, Australia.

To determine the organization of presympathetic vasomotor drive by phenotypic populations of rostral ventrolateral medulla (RVLM) neurons, we examined the somatosympathetic reflex (SSR) evoked in four sympathetic nerves together with selective lesions of RVLM presympathetic neurons. Urethane-anesthetized (1.3 g/kg ip), paralyzed, vagotomized and artificially ventilated Sprague-Dawley rats (n = 41) were used. First, we determined the afferent inputs activated by sciatic nerve (SN) stimulation at graded stimulus intensities (50 sweeps at 0.5-1 Hz, 1-80 V). Second, we recorded sympathetic nerve responses (cervical, renal, splanchnic, and lumbar) to intensities of SN stimulation that activated A-fiber afferents (low) or both A- and C-fiber afferents (high). Third, with low-intensity SN stimulation, we examined the cervical SSR following RVLM microinjection of somatostatin, and we determined the splanchnic SSR in rats in which presympathetic C1 neurons were lesioned following intraspinal injections of anti-dopamine-β-hydroxylase-saporin (anti-DβH-SAP). Low-intensity SN stimulation activated A-fiber afferents and evoked biphasic responses in the renal, splanchnic, and lumbar nerves and a single peak in the cervical nerve. Depletion of presympathetic C1 neurons (59 ± 4% tyrosine hydroxylase immunoreactivity profiles lesioned) eliminated peak 2 of the splanchnic SSR and attenuated peak 1, suggesting that only RVLM neurons with fast axonal conduction were spared. RVLM injections of somatostatin abolished the single early peak of cervical SSR confirming that RVLM neurons with fast axonal conduction were inhibited by somatostatin. It is concluded that unmyelinated RVLM presympathetic neurons, presumed to be all C1, innervate splanchnic, renal, and lumbar but not cervical sympathetic outflows, whereas myelinated C1 and non-C1 RVLM neurons innervate all sympathetic outflows examined. These findings suggest that multiple levels of neural control of vasomotor tone exist; myelinated populations may set baseline tone, while unmyelinated neurons may be recruited to provide actions at specific vascular beds in response to distinct stressors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00131.2011DOI Listing
October 2011

The generation of post-inspiratory activity in laryngeal motoneurons: a review.

Adv Exp Med Biol 2010 ;669:143-9

Australian School of Advanced Medicine, Macquarie University, Sydney, Australia.

Breathing is a vegetative function that is altered during more complex behaviours such as exercise, vocalisation and respiratory protective reflexes. Recent years have seen recognition of the importance of respiratory pattern generation in addition to rhythm generation. Respiratory-modulated cranial motoneurons (laryngeal, pharyngeal, hypoglossal, facial) offer a unique insight into the control of respiration since: (1) they receive rhythmic respiratory inputs but; (2) their respiratory-modulated firing pattern differs to that of phrenic neurons to suit their function, (for example, hypoglossal motoneurons begin firing and thus the tongue depresses before the onset of phrenic nerve discharge and diaphragmatic during inspiration) and; (3) their activity is often altered in parallel with changes in respiration during stereotypical non-respiratory behaviours such as coughing, swallowing and sneeze. Here we review some mechanisms that modulate the respiratory-related activity of laryngeal motoneurons with an emphasis on the generation of post-inspiratory activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4419-5692-7_29DOI Listing
May 2010

Galanin microinjection into the PreBötzinger or the Bötzinger Complex terminates central inspiratory activity and reduces responses to hypoxia and hypercapnia in rat.

Respir Physiol Neurobiol 2009 Jul 13;167(3):299-306. Epub 2009 Jun 13.

Australian School of Advanced Medicine, Macquarie University, 2109 NSW, Australia.

Respiratory rhythm is generated and shaped by the synaptic interaction of neurons in the Bötzinger Complex (BötC) and PreBötzinger Complex (PreBötC) located in the ventral respiratory column of the medulla. Metabotropic receptors are important modulators of fast neurotransmission in the generation and shaping of respiratory rhythm. Microinjection of the neuropeptide galanin (1mM, 50 nL, 50 pmol) into functionally identified BötC or PreBötC in urethane anesthetized, mechanically ventilated and vagotomized rats caused severe dysrhythmia or persistent apnea. In the BötC and PreBötC, galanin reduced the ventilatory response to hypercapnia (5% CO(2)) by 21% (P<0.001) and 38% (P<0.01) respectively. In the BötC and PreBötC, galanin reduced the ventilatory response to hypoxia (10% O(2)) by 15% (P<0.05) and 23% (P<0.01) respectively. These results indicate that microinjection of galanin into the BötC or PreBötC depresses a neural substrate required for the generation of respiratory motor output and reflex responses to hypercapnea and hypoxia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2009.06.003DOI Listing
July 2009

Somatostatin 2A receptor-expressing presympathetic neurons in the rostral ventrolateral medulla maintain blood pressure.

Hypertension 2008 Dec 10;52(6):1127-33. Epub 2008 Nov 10.

Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia.

Bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are critical for the maintenance of sympathetic vasomotor tone and normal cardiovascular reflex function. So far, selectively eliminating/inhibiting distinct subpopulations of RVLM neurons has not significantly altered arterial pressure. Here we show that RVLM presympathetic neurons that express somatostatin 2A receptors are essential for maintaining and potentially generating sympathetic vasomotor tone. Combined immunocytochemistry and in situ hybridization were used to map the expression of somatostatin receptors 1, 2A, 2B, 3, and 4 (sst1 through 4, respectively) in the rat RVLM. sst1 and sst2B were absent; sst3 and sst4 were sparse. However, sst2A was found postsynaptically and detected in 35+/-5% of bulbospinal RVLM neurons a population that included 54+/-4% of catecholaminergic and 30+/-3% of enkephalinergic neurons. Bilateral microinjection into the RVLM of either somatostatin or the receptor-selective agonist lanreotide evoked dramatic, dose-dependent sympathoinhibition, hypotension, and bradycardia that were blocked by the sst2 receptor antagonist BIM-23627 in anesthetized rats. Bilateral RVLM microinjection of somatostatin also attenuated chemoreceptor and somatosympathetic reflex function. Somatostatin only eliminated the first sympathoexcitatory peak evoked by somatosympathetic reflex activation, whereas muscimol abolished both excitatory peaks providing functional evidence that the activity of only a subpopulation of RVLM presympathetic neurons is inhibited by somatostatin. We suggest that the subpopulation of bulbospinal RVLM neurons that expresses the sst2A receptor sets sympathetic vasomotor output. These neurons are essential for maintaining resting blood pressure under anesthesia and contribute to adaptive reflexes mediated through the RVLM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.118224DOI Listing
December 2008

Metabotropic neurotransmission and integration of sympathetic nerve activity by the rostral ventrolateral medulla in the rat.

Clin Exp Pharmacol Physiol 2008 Apr;35(4):508-11

Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia.

1. Cardiovascular sympathetic nerve activity at rest is grouped into waves, or bursts, that are generally, although not exclusively, related to the heart rate and to respiration. In addition, activity is also generated in response to central commands and to environmental stimuli. 2. Responsibility for the integration of all these different elements of sympathetic activity rests with pre-motoneurons in the rostral ventrolateral medulla oblongata. These pre-motoneurons are glutamatergic and spinally projecting where they form synapses with sympathetic preganglionic neurons. 3. Pre-motoneurons also contain and presumably release, neurotransmitters other than glutamate, including amines and neuropeptides that act on metabotropic receptors with long-term effects on cell function. 4. Similarly, in the rostral ventrolateral medulla oblongata the pre-motoneurons are mainly regulated by excitatory influences from glutamate and inhibitory influences from gamma-aminobutyric acid (GABA). Major focuses of recent studies are the interactions between non-glutamatergic and GABAergic systems and reflexes that regulate the activity of the sympathetic nervous system. 5. The results indicate that neurotransmitters acting at metabotropic receptors selectively affect different reflexes in the rostral ventrolateral medulla. It is suggested that this differential activation or attenuation of reflexes by different neurotransmitters is a mechanism by which the organism can fine-tune its responses to different homeostatic requirements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1681.2008.04906.xDOI Listing
April 2008
-->