Publications by authors named "Peter C Kahn"

13 Publications

  • Page 1 of 1

funtrp: identifying protein positions for variation driven functional tuning.

Nucleic Acids Res 2019 12;47(21):e142

Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08901, USA.

Evaluating the impact of non-synonymous genetic variants is essential for uncovering disease associations and mechanisms of evolution. An in-depth understanding of sequence changes is also fundamental for synthetic protein design and stability assessments. However, the variant effect predictor performance gain observed in recent years has not kept up with the increased complexity of new methods. One likely reason for this might be that most approaches use similar sets of gene and protein features for modeling variant effects, often emphasizing sequence conservation. While high levels of conservation highlight residues essential for protein activity, much of the variation observable in vivo is arguably weaker in its impact, thus requiring evaluation at a higher level of resolution. Here, we describe functionNeutral/Toggle/Rheostatpredictor (funtrp), a novel computational method that categorizes protein positions based on the position-specific expected range of mutational impacts: Neutral (weak/no effects), Rheostat (function-tuning positions), or Toggle (on/off switches). We show that position types do not correlate strongly with familiar protein features such as conservation or protein disorder. We also find that position type distribution varies across different protein functions. Finally, we demonstrate that position types can improve performance of existing variant effect predictors and suggest a way forward for the development of new ones.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkz818DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868392PMC
December 2019

Intracellular cholesterol trafficking is dependent upon NPC2 interaction with lysobisphosphatidic acid.

Elife 2019 10 3;8. Epub 2019 Oct 3.

Department of Nutritional Sciences, Rutgers University, New Brunswick, United States.

Unesterified cholesterol accumulation in the late endosomal/lysosomal (LE/LY) compartment is the cellular hallmark of Niemann-Pick C (NPC) disease, caused by defects in the genes encoding NPC1 or NPC2. We previously reported the dramatic stimulation of NPC2 cholesterol transport rates to and from model membranes by the LE/LY phospholipid lysobisphosphatidic acid (LBPA). It had been previously shown that enrichment of NPC1-deficient cells with LBPA results in cholesterol clearance. Here we demonstrate that LBPA enrichment in human NPC2-deficient cells, either directly or via its biosynthetic precursor phosphtidylglycerol (PG), is entirely ineffective, indicating an obligate functional interaction between NPC2 and LBPA in cholesterol trafficking. We further demonstrate that NPC2 interacts directly with LBPA and identify the NPC2 hydrophobic knob domain as the site of interaction. Together these studies reveal a heretofore unknown step of intracellular cholesterol trafficking which is critically dependent upon the interaction of LBPA with functional NPC2 protein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.50832DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855803PMC
October 2019

The measurement of volume change by capillary dilatometry.

Authors:
Peter C Kahn

Protein Sci 2019 06 29;28(6):1135-1142. Epub 2019 Apr 29.

Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901.

Capillary dilatometry enables direct measurement of changes in volume, an extensive thermodynamic property. The results provide insight into the changes in hydration that occur upon protein folding, ligand binding, and the interactions of proteins with nucleic acids and other cellular components. Often the entropy change arising from release of hydrating solvent provides the main driving force of a binding reaction. For technical reasons, though, capillary dilatometry has not been as widely used in protein biochemistry and biophysics as other methods such as calorimetry. Described here are simple apparatus and simple methods, which bring the technique within the capacity of any laboratory. Even very simple results are shown to have implications for macromolecular-based phenomena. Protein examples are described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pro.3626DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511832PMC
June 2019

The operon protects from copper toxicity: CopL is an extracellular membrane-associated copper-binding protein.

J Biol Chem 2019 03 17;294(11):4027-4044. Epub 2019 Jan 17.

From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901,

As complications associated with antibiotic resistance have intensified, copper (Cu) is attracting attention as an antimicrobial agent. Recent studies have shown that copper surfaces decrease microbial burden, and host macrophages use Cu to increase bacterial killing. Not surprisingly, microbes have evolved mechanisms to tightly control intracellular Cu pools and protect against Cu toxicity. Here, we identified two genes ( and ) encoded within the arginine-catabolic mobile element (ACME) that we hypothesized function in Cu homeostasis. Supporting this hypothesis, mutational inactivation of or increased copper sensitivity. We found that are co-transcribed and that their transcription is increased during copper stress and in a strain in which , encoding a Cu-responsive transcriptional repressor, was mutated. Moreover, displayed genetic synergy with suggesting that CopB functions in Cu export. We further observed that CopL functions independently of CopB or CopA in Cu toxicity protection and that CopL from the clone USA300 is a membrane-bound and surface-exposed lipoprotein that binds up to four Cu ions. Solution NMR structures of the homologous CopL, together with phylogenetic analysis and chemical-shift perturbation experiments, identified conserved residues potentially involved in Cu coordination. The solution NMR structure also revealed a novel Cu-binding architecture. Of note, a CopL variant with defective Cu binding did not protect against Cu toxicity Taken together, these findings indicate that the ACME-encoded CopB and CopL proteins are additional factors utilized by the highly successful USA300 clone to suppress copper toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.RA118.004723DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422080PMC
March 2019

The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1.

Infect Immun 2016 01 19;84(1):149-61. Epub 2015 Oct 19.

Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections can lead to life-threatening complications, including hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS), which is the most common cause of acute renal failure in children in the United States. Stx1 and Stx2 are AB5 toxins consisting of an enzymatically active A subunit associated with a pentamer of receptor binding B subunits. Epidemiological evidence suggests that Stx2-producing E. coli strains are more frequently associated with HUS than Stx1-producing strains. Several studies suggest that the B subunit plays a role in mediating toxicity. However, the role of the A subunits in the increased potency of Stx2 has not been fully investigated. Here, using purified A1 subunits, we show that Stx2A1 has a higher affinity for yeast and mammalian ribosomes than Stx1A1. Biacore analysis indicated that Stx2A1 has faster association and dissociation with ribosomes than Stx1A1. Analysis of ribosome depurination kinetics demonstrated that Stx2A1 depurinates yeast and mammalian ribosomes and an RNA stem-loop mimic of the sarcin/ricin loop (SRL) at a higher catalytic rate and is a more efficient enzyme than Stx1A1. Stx2A1 depurinated ribosomes at a higher level in vivo and was more cytotoxic than Stx1A1 in Saccharomyces cerevisiae. Stx2A1 depurinated ribosomes and inhibited translation at a significantly higher level than Stx1A1 in human cells. These results provide the first direct evidence that the higher affinity for ribosomes in combination with higher catalytic activity toward the SRL allows Stx2A1 to depurinate ribosomes, inhibit translation, and exhibit cytotoxicity at a significantly higher level than Stx1A1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.00994-15DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693993PMC
January 2016

Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport.

J Biol Chem 2015 Nov 20;290(45):27321-27331. Epub 2015 Aug 20.

Department of Nutritional Sciences and Rutgers Center for Lipid Research and. Electronic address:

The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M115.667469DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646368PMC
November 2015

Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk.

J Biol Chem 2013 Oct 3;288(42):30270-30284. Epub 2013 Sep 3.

From the Departments of Plant Biology and Pathology and. Electronic address:

Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their K(m) values and catalytic rates (k(cat)) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in K(m) and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M113.510966DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798493PMC
October 2013

Neutral and weakly nonneutral sequence variants may define individuality.

Proc Natl Acad Sci U S A 2013 Aug 12;110(35):14255-60. Epub 2013 Aug 12.

Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.

Large-scale computational analyses of the growing wealth of genome-variation data consistently tell two distinct stories. The first is expected: coding variants reported in disease-related databases significantly alter the function of affected proteins. The second is surprising: the genomes of healthy individuals appear to carry many variants that are predicted to have some effect on function. As long as the complete experimental analysis of all human genome variants remains impossible, computational methods, such as PolyPhen, SNAP, and SIFT, might provide important insights. These methods capture the effects of particular variants very well and can highlight trends in populations of variants. Diseases are, arguably, extreme phenotypic variations and are often attributable to one or a few severely functionally disruptive variants. Our findings suggest a genomic basis of the different nondisease phenotypes. Prediction methods indicate that variants in seemingly healthy individuals tend to be neutral or weakly disruptive for protein molecular function. These variant effects are predicted to be largely either experimentally undetectable or are not deemed significant enough to be published. This may suggest that nondisease phenotypes arise through combinations of many variants whose effects are weakly nonneutral (damaging or enhancing) to the molecular protein function but fall within the wild-type range of overall physiological function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1216613110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761624PMC
August 2013

Identification of amino acids critical for the cytotoxicity of Shiga toxin 1 and 2 in Saccharomyces cerevisiae.

Toxicon 2011 Mar 22;57(4):525-39. Epub 2010 Dec 22.

Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8502, USA.

Shiga toxins (Stx1 and Stx2) are produced by E. coli O157:H7, which is a leading cause of foodborne illness. The A subunits of Stx1 (Stx1A) and Stx2 (Stx2A) are ribosome inactivating proteins (RIPs) that inhibit translation by removing an adenine from the highly conserved α-sarcin ricin loop (SRL) of the large rRNA. Here, we used mutagenesis in Saccharomyces cerevisiae to identify residues critical for cytotoxicity of Stx1A and Stx2A. The A subunits depurinated the SRL, inhibited translation and caused apoptotic-like cell death in yeast. Single mutations in Asn75, Tyr77, Glu167 and Arg176 reduced the cytotoxicity of both toxins around 10-fold. However, Asn75 and Tyr77 were more critical for the depurination activity of Stx2A, while Arg176 was more critical for the depurination activity of Stx1A. The crystal structures of the two proteins lack electron density for some surface loops, including one which is adjacent to the active site in both molecules. Modeling these loops changed neither the secondary nor the tertiary structures of the rest of the protein. Analysis of solvent accessible surface areas indicated that Asn75 and Tyr77 are more exposed in Stx2A, while Arg176 is more exposed in Stx1A, indicating that residues with higher surface exposure were more critical for enzymatic activity. Double mutations at Glu167 and Arg176 eliminated the depurination activity and cytotoxicity of both toxins. C-terminal deletions of A chains eliminated cytotoxicity of both toxins, but showed functional differences. Unlike Stx1A, cytotoxicity of Stx2A was lost before its ability to depurinate ribosomes. These results identify residues that affect enzymatic activity and cytotoxicity of Stx1A and Stx2A differently and demonstrate that the function of these residues can be differentiated in yeast. The extent of ribosome depurination and translation inhibition did not correlate with the extent of cell death, indicating that depurination of the SRL and inhibition of translation are not entirely responsible for cell death.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2010.12.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055938PMC
March 2011

Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p.

Eukaryot Cell 2006 Oct 25;5(10):1664-73. Epub 2006 Aug 25.

Dept. of Biology, Brooklyn College, 2900 Bedford Ave., Brooklyn, NY 11210, USA.

Commensal and pathogenic states of Candida albicans depend on cell surface-expressed adhesins, including those of the Als family. Mature Als proteins consist of a 300-residue N-terminal region predicted to have an immunoglobulin (Ig)-like fold, a 104-residue conserved Thr-rich region (T), a central domain of a variable number of tandem repeats (TR) of a 36-residue Thr-rich sequence, and a heavily glycosylated C-terminal Ser/Thr-rich stalk region, also of variable length (N. K. Gaur and S. A. Klotz, Infect. Immun. 65: 5289-5294, 1997). Domain deletions in ALS5 were expressed in Saccharomyces cerevisiae to excrete soluble protein and for surface display. Far UV circular dichroism indicated that soluble Ig-T showed a single negative peak at 212 nm, consistent with previous data indicating that this region has high beta-sheet content with very little alpha-helix. A truncation of Als5p with six tandem repeats (Ig-T-TR(6)) gave spectra with additional negative ellipticity at 200 nm and, at 227 to 240 nm, spectra characteristic of a structure with a similar fraction of beta-sheet but with additional structural elements as well. Soluble Als5p Ig-T and Ig-T-TR(6) fragments bound to fibronectin in vitro, but the inclusion of the TR region substantially increased affinity. Cellular adhesion assays with S. cerevisiae showed that the Ig-T domain mediated adherence to fibronectin and that TR repeats greatly increased cell-to-cell aggregation. Thus, the TR region of Als5p modulated the structure of the Ig-T region, augmented cell adhesion activity through increased binding to mammalian ligands, and simultaneously promoted fungal cell-cell interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/EC.00120-06DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1595330PMC
October 2006

Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

J Biol Chem 2006 May 21;281(20):13979-89. Epub 2006 Mar 21.

Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, Calles 60 y 120, 1900-La Plata, Argentina.

Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M511943200DOI Listing
May 2006

Role of the helical domain in fatty acid transfer from adipocyte and heart fatty acid-binding proteins to membranes: analysis of chimeric proteins.

J Biol Chem 2002 Jan 23;277(3):1806-15. Epub 2001 Oct 23.

Department of Nutritional Sciences, and the Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901-8525, USA.

The adipocyte and heart fatty acid-binding proteins (A- and HFABP) are members of a lipid-binding protein family with a beta-barrel body capped by a small helix-turn-helix motif. Both proteins are hypothesized to transport fatty acid (FA) to phospholipid membranes through a collisional process. Previously, we suggested that the helical domain is particularly important for the electrostatic interactions involved in this transfer mechanism (Herr, F. M., Aronson, J., and Storch, J. (1996) Biochemistry 35, 1296-1303; and Liou, H.-L., and Storch, J. (2001) Biochemistry 40, 6475-6485). Despite their using qualitatively similar FA transfer mechanisms, differences in absolute transfer rates as well as regulation of transfer from AFABP versus HFABP, prompted us to consider the structural determinants that underlie these functional disparities. To determine the specific elements underlying the functional differences between AFABP and HFABP in FA transfer, two pairs of chimeric proteins were generated. The first and second pairs had the entire helical domain and the first alpha-helix exchanged between A- and HFABP, respectively. The transfer rates of anthroyloxy-labeled fatty acid from proteins to small unilamellar vesicles were compared with the wild type AFABP and HFABP. The results suggest that the alphaII-helix is important in determining the absolute FA transfer rates. Furthermore, the alphaI-helix appears to be particularly important in regulating protein sensitivity to the negative charge of membranes. The alphaI-helix of HFABP and the alphaII-helix of AFABP increased the sensitivity to anionic vesicles; the alphaI-helix of AFABP and alphaII-helix of HFABP decreased the sensitivity. The differential sensitivities to negative charge, as well as differential absolute rates of FA transfer, may help these two proteins to function uniquely in their respective cell types.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M107987200DOI Listing
January 2002