Publications by authors named "Peter B Adler"

58 Publications

Biotic versus abiotic controls on temporal sensitivity of primary production to precipitation across North American drylands.

New Phytol 2021 Jun 9. Epub 2021 Jun 9.

Department of Wildland Resources and The Ecology Center, Utah State University, Logan, Utah, 84322, USA.

Dryland net primary productivity (NPP) is sensitive to temporal variation in precipitation (PPT), but the magnitude of this 'temporal sensitivity' varies spatially. Hypotheses for spatial variation in temporal sensitivity have often emphasized abiotic factors, such as moisture limitation, while overlooking biotic factors, such as vegetation structure. We tested these hypotheses using spatiotemporal models fit to remote sensing datasets to assess how vegetation structure and climate influence temporal sensitivity across five dryland ecoregions of the western United States. Temporal sensitivity was higher in locations and ecoregions dominated by herbaceous vegetation. By contrast, much less spatial variation in temporal sensitivity was explained by mean annual PPT. In fact, ecoregion-specific models showed inconsistent associations of sensitivity and PPT; while sensitivity decreased with increasing mean annual PPT in most ecoregions, it increased with mean annual PPT in the most arid ecoregion, the hot deserts. The strong, positive influence of herbaceous vegetation on temporal sensitivity indicates that herbaceous-dominated drylands will be particularly sensitive to future increases in precipitation variability, and that dramatic changes in cover type caused by invasions or shrub encroachment will lead to changes in dryland NPP dynamics, perhaps independent of changes in precipitation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.17543DOI Listing
June 2021

A practical guide to selecting models for exploration, inference, and prediction in ecology.

Ecology 2021 Jun 4;102(6):e03336. Epub 2021 May 4.

Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main Hill, Logan, Utah, 84322, USA.

Selecting among competing statistical models is a core challenge in science. However, the many possible approaches and techniques for model selection, and the conflicting recommendations for their use, can be confusing. We contend that much confusion surrounding statistical model selection results from failing to first clearly specify the purpose of the analysis. We argue that there are three distinct goals for statistical modeling in ecology: data exploration, inference, and prediction. Once the modeling goal is clearly articulated, an appropriate model selection procedure is easier to identify. We review model selection approaches and highlight their strengths and weaknesses relative to each of the three modeling goals. We then present examples of modeling for exploration, inference, and prediction using a time series of butterfly population counts. These show how a model selection approach flows naturally from the modeling goal, leading to different models selected for different purposes, even with exactly the same data set. This review illustrates best practices for ecologists and should serve as a reminder that statistical recipes cannot substitute for critical thinking or for the use of independent data to test hypotheses and validate predictions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3336DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187274PMC
June 2021

What processes must we understand to forecast regional-scale population dynamics?

Proc Biol Sci 2020 12 9;287(1940):20202219. Epub 2020 Dec 9.

Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA.

An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1098/rspb.2020.2219DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739927PMC
December 2020

General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales.

Nat Commun 2020 10 23;11(1):5375. Epub 2020 Oct 23.

Department of Ecology, Evolution, and Behavior, University of MN, St. Paul, MN, 55108, USA.

Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19252-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585434PMC
October 2020

Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time.

Ecology 2021 02 18;102(2):e03218. Epub 2021 Jan 18.

Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA.

Human activities are enriching many of Earth's ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5-11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient-induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short-term experiments may underestimate the long-term nutrient enrichment effects on global grassland ecosystems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3218DOI Listing
February 2021

Synchrony matters more than species richness in plant community stability at a global scale.

Proc Natl Acad Sci U S A 2020 09 8;117(39):24345-24351. Epub 2020 Sep 8.

Terrestrial Ecology Group (TEG), Department of Ecology, Institute for Biodiversity and Global Change, Autonomous University of Madrid, 28049, Madrid, Spain.

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1920405117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533703PMC
September 2020

Technical Comment on Pande et al. (2020): Why invasion analysis is important for understanding coexistence.

Ecol Lett 2020 Nov 26;23(11):1721-1724. Epub 2020 Aug 26.

Department of Evolution and Ecology and the Center of Population Biology, University of California, Davis, CA, USA.

Pande et al. (2020) point out that persistence time can decrease even as invader growth rates (IGRs) increase, which potentially undermines modern coexistence theory. However, because persistence time increases rapidly with system size only when IGR > 0, to understand how any real community persists, we should first identify the mechanisms producing positive IGR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13580DOI Listing
November 2020

The Net Effect of Functional Traits on Fitness.

Trends Ecol Evol 2020 11 14;35(11):1037-1047. Epub 2020 Aug 14.

School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA.

Generalizing the effect of traits on performance across species may be achievable if traits explain variation in population fitness. However, testing relationships between traits and vital rates to infer effects on fitness can be misleading. Demographic trade-offs can generate variation in vital rates that yield equal population growth rates, thereby obscuring the net effect of traits on fitness. To address this problem, we describe a diversity of approaches to quantify intrinsic growth rates of plant populations, including experiments beyond range boundaries, density-dependent population models built from long-term demographic data, theoretical models, and methods that leverage widely available monitoring data. Linking plant traits directly to intrinsic growth rates is a fundamental step toward rigorous predictions of population dynamics and community assembly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tree.2020.07.010DOI Listing
November 2020

Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties.

Glob Chang Biol 2020 Dec 22;26(12):7173-7185. Epub 2020 Sep 22.

Grupo de Investigaciones en Biología de la Conservación, INIBIOMA (CONICET-UNCOMA), Bariloche, Argentina.

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net N ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net N across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net N . Herbivore removal in the absence of fertilization did not alter potential and realized soil net N . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net N Realized soil net N , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net N were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net N were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net N declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net N across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15308DOI Listing
December 2020

Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands.

Glob Chang Biol 2020 Feb 3. Epub 2020 Feb 3.

Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155038PMC
February 2020

Climate change, snow mold and the invasion: mixed evidence for release from cold weather pathogens.

AoB Plants 2019 Oct 16;11(5):plz043. Epub 2019 Jul 16.

Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA.

Climate change is reducing the depth and duration of winter snowpack, leading to dramatic changes in the soil environment with potentially important ecological consequences. Previous experiments in the Intermountain West of North America indicated that loss of snowpack increases survival and population growth rates of the invasive annual grass ; however, the underlying mechanism is unknown. We hypothesized that reduced snowpack might promote population growth by decreasing damage from snow molds, a group of subnivean fungal pathogens. To test this hypothesis, we conducted greenhouse and field experiments to investigate the interaction between early snowmelt and either fungicide addition or snow mold infection of . The greenhouse experiment confirmed that the snow mold can cause mortality of seedlings. In the field experiment, early snowmelt and fungicide application both increased survival, but their effects did not interact, and snow mold inoculation had no effect on survival. We did find interactive effects of snowmelt and fungal treatments on seed production: with ambient snowpack, inoculation reduced seed production and fungicide increased it, whereas in the early snowmelt treatment seed production was high regardless of fungal treatment. However, treatment effects on seed production did not translate directly to overall population growth, which did not respond to the snow melt by fungal treatment interaction. Based on our mixed results, the hypothesis that reduced snowpack may increase fitness by limiting the effects of plant pathogens deserves further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aobpla/plz043DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756605PMC
October 2019

Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs.

Nat Ecol Evol 2019 03 4;3(3):400-406. Epub 2019 Feb 4.

Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.

Leaf traits are frequently measured in ecology to provide a 'common currency' for predicting how anthropogenic pressures impact ecosystem function. Here, we test whether leaf traits consistently respond to experimental treatments across 27 globally distributed grassland sites across 4 continents. We find that specific leaf area (leaf area per unit mass)-a commonly measured morphological trait inferring shifts between plant growth strategies-did not respond to up to four years of soil nutrient additions. Leaf nitrogen, phosphorus and potassium concentrations increased in response to the addition of each respective soil nutrient. We found few significant changes in leaf traits when vertebrate herbivores were excluded in the short-term. Leaf nitrogen and potassium concentrations were positively correlated with species turnover, suggesting that interspecific trait variation was a significant predictor of leaf nitrogen and potassium, but not of leaf phosphorus concentration. Climatic conditions and pretreatment soil nutrient levels also accounted for significant amounts of variation in the leaf traits measured. Overall, we find that leaf morphological traits, such as specific leaf area, are not appropriate indicators of plant response to anthropogenic perturbations in grasslands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-018-0790-1DOI Listing
March 2019

An expanded modern coexistence theory for empirical applications.

Ecol Lett 2019 Jan 11;22(1):3-18. Epub 2018 Oct 11.

Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA.

Understanding long-term coexistence of numerous competing species is a longstanding challenge in ecology. Progress requires determining which processes and species differences are most important for coexistence when multiple processes operate and species differ in many ways. Modern coexistence theory (MCT), formalised by Chesson, holds out the promise of doing that, but empirical applications remain scarce. We argue that MCT's mathematical complexity and subtlety have obscured the simplicity and power of its underlying ideas and hindered applications. We present a general computational approach that extends our previous solution for the storage effect to all of standard MCT's spatial and temporal coexistence mechanisms, and also process-defined mechanisms amenable to direct study such as resource partitioning, indirect competition, and life history trade-offs. The main components are a method to partition population growth rates into contributions from different mechanisms and their interactions, and numerical calculations in which some mechanisms are removed and others retained. We illustrate how our approach handles features that have not been analysed in the standard framework through several case studies: competing diatom species under fluctuating temperature, plant-soil feedbacks in grasslands, facilitation in a beach grass community, and niche differences with independent effects on recruitment, survival and growth in sagebrush steppe.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13159DOI Listing
January 2019

Size-by-environment interactions: a neglected dimension of species' responses to environmental variation.

Ecol Lett 2018 Dec 24;21(12):1757-1770. Epub 2018 Sep 24.

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.

In both plant and animal systems, size can determine whether an individual survives and grows under different environmental conditions. However, it is unclear whether and when size-dependent responses to exogenous environmental fluctuations affect population dynamics. Size-by-environment interactions create pathways for environmental fluctuations to influence population dynamics by allowing for negative covariation between sizes within vital rates (e.g. small and large individuals have negatively covarying survival rates) and/or size-dependent variability in a vital rate (e.g. survival of large individuals varies less than small individuals through time). Whether these phenomena affect population dynamics depends on how they are mediated by elasticities (they must affect the sizes and vital rates that matter) and their projected impacts will depend on model functional form (the impact of reduced variance depends on the relationship between the environment and vital rate). We demonstrate these ideas with an analysis of fifteen species from five semiarid plant communities. We find that size-by-environment interactions are common but do not impact long-term population dynamics. Size-by-environment interactions may yet be important for other species. Our approach can be applied to species in other ecosystems to determine if and how size-by-environment interactions allow them to cope with, or exploit, fluctuating environments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13154DOI Listing
December 2018

Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation.

Ecol Lett 2018 09 27;21(9):1364-1371. Epub 2018 Jun 27.

Department of Biology, Duke University, Durham, NC, 27708, USA.

Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change - fertilisation and herbivore loss - are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13102DOI Listing
September 2018

Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition.

Ecol Lett 2018 09 25;21(9):1319-1329. Epub 2018 Jun 25.

Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA.

Theory predicts that intraspecific competition should be stronger than interspecific competition for any pair of stably coexisting species, yet previous literature reviews found little support for this pattern. We screened over 5400 publications and identified 39 studies that quantified phenomenological intraspecific and interspecific interactions in terrestrial plant communities. Of the 67% of species pairs in which both intra- and interspecific effects were negative (competitive), intraspecific competition was, on average, four to five-fold stronger than interspecific competition. Of the remaining pairs, 93% featured intraspecific competition and interspecific facilitation, a situation that stabilises coexistence. The difference between intra- and interspecific effects tended to be larger in observational than experimental data sets, in field than greenhouse studies, and in studies that quantified population growth over the full life cycle rather than single fitness components. Our results imply that processes promoting stable coexistence at local scales are common and consequential across terrestrial plant communities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13098DOI Listing
September 2018

Weak interspecific interactions in a sagebrush steppe? Conflicting evidence from observations and experiments.

Ecology 2018 07 7;99(7):1621-1632. Epub 2018 Jun 7.

Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, New York, USA.

Stable coexistence requires intraspecific limitations to be stronger than interspecific limitations. The greater the difference between intra- and interspecific limitations, the more stable the coexistence, and the weaker the competitive release any species should experience following removal of competitors. We conducted a removal experiment to test whether a previously estimated model, showing surprisingly weak interspecific competition for four dominant species in a sagebrush steppe, accurately predicts competitive release. Our treatments were (1) removal of all perennial grasses and (2) removal of the dominant shrub, Artemisia tripartita. We regressed survival, growth, and recruitment on the locations, sizes, and species identities of neighboring plants, along with an indicator variable for removal treatment. If our "baseline" regression model, which accounts for local plant-plant interactions, accurately explains the observed responses to removals, then the removal coefficient should be non-significant. For survival, the removal coefficients were never significantly different from zero, and only A. tripartita showed a (negative) response to removals at the recruitment stage. For growth, the removal treatment effect was significant and positive for two species, Poa secunda and Pseudoroegneria spicata, indicating that the baseline model underestimated interspecific competition. For all three grass species, population models based on the vital rate regressions that included removal effects projected 1.4- to 3-fold increases in equilibrium population size relative to the baseline model (no removal effects). However, we found no evidence of higher response to removal in quadrats with higher pretreatment cover of A. tripartita, or by plants experiencing higher pre-treatment crowding by A. tripartita, raising questions about the mechanisms driving the positive response to removal. While our results show the value of combining observations with a simple removal experiment, more tightly controlled experiments focused on underlying mechanisms may be required to conclusively validate or reject predictions from phenomenological models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2363DOI Listing
July 2018

The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range.

Ecology 2018 05 6;99(5):1139-1149. Epub 2018 Apr 6.

Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main Hill, Logan, Utah, 84322, USA.

Understanding how annual climate variation affects population growth rates across a species' range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species' range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year-to-year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short-term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic insight and helps estimate how much and how fast sagebrush cover may change within its range.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2191DOI Listing
May 2018

Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient.

Ecology 2018 04 31;99(4):822-831. Epub 2018 Mar 31.

Department of Ecology, Evolution, and Behavior, University of MN, St. Paul, Minnesota, 55108, USA.

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2175DOI Listing
April 2018

Ecosystem functional response across precipitation extremes in a sagebrush steppe.

PeerJ 2018 13;6:e4485. Epub 2018 Mar 13.

Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, United States of America.

Background: Precipitation is predicted to become more variable in the western United States, meaning years of above and below average precipitation will become more common. Periods of extreme precipitation are major drivers of interannual variability in ecosystem functioning in water limited communities, but how ecosystems respond to these extremes over the long-term may shift with precipitation means and variances. Long-term changes in ecosystem functional response could reflect compensatory changes in species composition or species reaching physiological thresholds at extreme precipitation levels.

Methods: We conducted a five year precipitation manipulation experiment in a sagebrush steppe ecosystem in Idaho, United States. We used drought and irrigation treatments (approximately 50% decrease/increase) to investigate whether ecosystem functional response remains consistent under sustained high or low precipitation. We recorded data on aboveground net primary productivity (ANPP), species abundance, and soil moisture. We fit a generalized linear mixed effects model to determine if the relationship between ANPP and soil moisture differed among treatments. We used nonmetric multidimensional scaling to quantify community composition over the five years.

Results: Ecosystem functional response, defined as the relationship between soil moisture and ANPP, was similar among irrigation and control treatments, but the drought treatment had a greater slope than the control treatment. However, all estimates for the effect of soil moisture on ANPP overlapped zero, indicating the relationship is weak and uncertain regardless of treatment. There was also large spatial variation in ANPP within-years, which contributes to the uncertainty of the soil moisture effect. Plant community composition was remarkably stable over the course of the experiment and did not differ among treatments.

Discussion: Despite some evidence that ecosystem functional response became more sensitive under sustained drought conditions, the response of ANPP to soil moisture was consistently weak and community composition was stable. The similarity of ecosystem functional responses across treatments was not related to compensatory shifts at the plant community level, but instead may reflect the insensitivity of the dominant species to soil moisture. These species may be successful precisely because they have evolved life history strategies that buffer them against precipitation variability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.4485DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855887PMC
March 2018

Direct effects of warming increase woody plant abundance in a subarctic wetland.

Ecol Evol 2018 03 11;8(5):2868-2879. Epub 2018 Feb 11.

Department of Wildland Resources and the Ecology Center Utah State University Logan UT USA.

Both the direct effects of warming on a species' vital rates and indirect effects of warming caused by interactions with neighboring species can influence plant populations. Furthermore, herbivory mediates the effects of warming on plant community composition in many systems. Thus, determining the importance of direct and indirect effects of warming, while considering the role of herbivory, can help predict long-term plant community dynamics. We conducted a field experiment in the coastal wetlands of western Alaska to investigate how warming and herbivory influence the interactions and abundances of two common plant species, a sedge, , and a dwarf shrub, . We used results from the experiment to model the equilibrium abundances of the species under different warming and grazing scenarios and to determine the contribution of direct and indirect effects to predict population changes. Consistent with the current composition of the landscape, model predictions suggest that is more abundant than under ambient temperatures with grazing (53% and 27% cover, respectively). However, with warming and grazing, becomes more abundant than (57% and 41% cover, respectively), reflecting both a negative response of and a positive response of to warming. While grazing reduced the cover of both species, herbivory did not prevent a shift in dominance from sedges to the dwarf shrub. Direct effects of climate change explained about 97% of the total predicted change in species cover, whereas indirect effects explained only 3% of the predicted change. Thus, indirect effects, mediated by interactions between and were negligible, likely due to use of different niches and weak interspecific interactions. Results suggest that a 2°C increase could cause a shift in dominance from sedges to woody plants on the coast of western Alaska over decadal timescales, and this shift was largely a result of the direct effects of warming. Models predict this shift with or without goose herbivory. Our results are consistent with other studies showing an increase in woody plant abundance in the Arctic and suggest that shifts in plant-plant interactions are not driving this change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.3902DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838087PMC
March 2018

Survival rates indicate that correlations between community-weighted mean traits and environments can be unreliable estimates of the adaptive value of traits.

Ecol Lett 2018 03 22;21(3):411-421. Epub 2018 Jan 22.

School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA.

Correlations between community-weighted mean (CWM) traits and environmental gradients are often assumed to quantify the adaptive value of traits. We tested this assumption by comparing these correlations with models of survival probability using 46 perennial species from long-term permanent plots in pine forests of Arizona. Survival was modelled as a function of trait × environment interactions, plant size, climatic variation and neighbourhood competition. The effect of traits on survival depended on the environmental conditions, but the two statistical approaches were inconsistent. For example, CWM-specific leaf area (SLA) and soil fertility were uncorrelated. However, survival was highest for species with low SLA in infertile soil, a result which agreed with expectations derived from the physiological trade-off underpinning leaf economic theory. CWM trait-environment relationships were unreliable estimates of how traits affected survival, and should only be used in predictive models when there is empirical support for an evolutionary trade-off that affects vital rates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12914DOI Listing
March 2018

Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality.

Nat Ecol Evol 2018 Jan 4;2(1):50-56. Epub 2017 Dec 4.

Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546-0091, USA.

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)-had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-017-0395-0DOI Listing
January 2018

Multi-model comparison highlights consistency in predicted effect of warming on a semi-arid shrub.

Glob Chang Biol 2018 Jan 11;24(1):424-438. Epub 2017 Oct 11.

Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA.

A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi-model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.13900DOI Listing
January 2018

The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence.

Ecol Lett 2017 08 9;20(8):958-968. Epub 2017 Jun 9.

Departments of Biology and Mathematics, University of Utah, Salt Lake City, UT, 84112, USA.

Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12793DOI Listing
August 2017

Beyond pairwise mechanisms of species coexistence in complex communities.

Nature 2017 05;546(7656):56-64

Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.

The tremendous diversity of species in ecological communities has motivated a century of research into the mechanisms that maintain biodiversity. However, much of this work examines the coexistence of just pairs of competitors. This approach ignores those mechanisms of coexistence that emerge only in diverse competitive networks. Despite the potential for these mechanisms to create conditions under which the loss of one competitor triggers the loss of others, we lack the knowledge needed to judge their importance for coexistence in nature. Progress requires borrowing insight from the study of multitrophic interaction networks, and coupling empirical data to models of competition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature22898DOI Listing
May 2017

The effects of intransitive competition on coexistence.

Ecol Lett 2017 07 26;20(7):791-800. Epub 2017 May 26.

Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA.

Coexistence theory has been developed with an almost exclusive focus on interactions between two species, often ignoring more complex and indirect interactions, such as intransitive loops, that can emerge in competition networks. In fact, intransitive competition has typically been studied in isolation from other pairwise stabilising processes, and thus little is known about how intransitivity interacts with more traditional drivers of species coexistence such as niche partitioning. To integrate intransitivity into traditional coexistence theory, we developed a metric of growth rate when rare, Δri¯, to identify and quantify the impact of intransitive competition against a backdrop of pairwise stabilising niche differences. Using this index with simulations of community dynamics, we demonstrate that intransitive loops can both stabilise or destabilise species coexistence, but the strength and importance of intransitive interactions are significantly affected by the length and the topology of these loops. We conclude by showing how Δri¯ can be used to evaluate effects of intransitivity in empirical studies. Our results emphasise the need to integrate complex mechanisms emerging from diverse interactions into our understanding of species coexistence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12775DOI Listing
July 2017

Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands.

Ecology 2017 Apr;98(4):971-981

Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main Hill, Logan, Utah, 84322, USA.

Temporal asynchrony among species helps diversity to stabilize ecosystem functioning, but identifying the mechanisms that determine synchrony remains a challenge. Here, we refine and test theory showing that synchrony depends on three factors: species responses to environmental variation, interspecific interactions, and demographic stochasticity. We then conduct simulation experiments with empirical population models to quantify the relative influence of these factors on the synchrony of dominant species in five semiarid grasslands. We found that the average synchrony of per capita growth rates, which can range from 0 (perfect asynchrony) to 1 (perfect synchrony), was higher when environmental variation was present (0.62) rather than absent (0.43). Removing interspecific interactions and demographic stochasticity had small effects on synchrony. For the dominant species in these plant communities, where species interactions and demographic stochasticity have little influence, synchrony reflects the covariance in species' responses to the environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.1757DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386145PMC
April 2017