Publications by authors named "Per Hoffmann"

228 Publications

Identification of pleiotropy at the gene level between psychiatric disorders and related traits.

Transl Psychiatry 2021 07 29;11(1):410. Epub 2021 Jul 29.

NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.

Major mental disorders are highly prevalent and make a substantial contribution to the global disease burden. It is known that mental disorders share clinical characteristics, and genome-wide association studies (GWASs) have recently provided evidence for shared genetic factors as well. Genetic overlaps are usually identified at the single-marker level. Here, we aimed to identify genetic overlaps at the gene level between 7 mental disorders (schizophrenia, autism spectrum disorder, major depressive disorder, anorexia nervosa, ADHD, bipolar disorder and anxiety), 8 brain morphometric traits, 2 cognitive traits (educational attainment and general cognitive function) and 9 personality traits (subjective well-being, depressive symptoms, neuroticism, extraversion, openness to experience, agreeableness and conscientiousness, children's aggressive behaviour, loneliness) based on publicly available GWASs. We performed systematic conditional regression analyses to identify independent signals and select loci associated with more than one trait. We identified 48 genes containing independent markers associated with several traits (pleiotropy at the gene level). We also report 9 genes with different markers that show independent associations with single traits (allelic heterogeneity). This study demonstrates that mental disorders and related traits do show pleiotropy at the gene level as well as the single-marker level. The identification of these genes might be important for prioritizing further deep genotyping, functional studies, or drug targeting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01530-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322263PMC
July 2021

Search for AL amyloidosis risk factors using Mendelian randomization.

Blood Adv 2021 07;5(13):2725-2731

Biomedical Center, Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czech Republic; and.

In amyloid light chain (AL) amyloidosis, amyloid fibrils derived from immunoglobulin light chain are deposited in many organs, interfering with their function. The etiology of AL amyloidosis is poorly understood. Summary data from genome-wide association studies (GWASs) of multiple phenotypes can be exploited by Mendelian randomization (MR) methodology to search for factors influencing AL amyloidosis risk. We performed a 2-sample MR analyzing 72 phenotypes, proxied by 3461 genetic variants, and summary genetic data from a GWAS of 1129 AL amyloidosis cases and 7589 controls. Associations with a Bonferroni-defined significance level were observed for genetically predicted increased monocyte counts (P = 3.8 × 10-4) and the tumor necrosis factor receptor superfamily member 17 (TNFRSF17) gene (P = 3.4 × 10-5). Two other associations with the TNFRSF (members 6 and 19L) reached a nominal significance level. The association between genetically predicted decreased fibrinogen levels may be related to roles of fibrinogen other than blood clotting. be related to its nonhemostatic role. It is plausible that a causal relationship with monocyte concentration could be explained by selection of a light chain-producing clone during progression of monoclonal gammopathy of unknown significance toward AL amyloidosis. Because TNFRSF proteins have key functions in lymphocyte biology, it is entirely plausible that they offer a potential link to AL amyloidosis pathophysiology. Our study provides insight into AL amyloidosis etiology, suggesting high circulating levels of monocytes and TNFRSF proteins as risk factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/bloodadvances.2021004423DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288669PMC
July 2021

DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations.

Front Genet 2021 16;12:691947. Epub 2021 Jun 16.

Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes and encode poly(ADP-ribosyl) transferases with multiple regulatory functions. and have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and , a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2021.691947DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242355PMC
June 2021

Interaction of Alzheimer's Disease-Associated Genetic Risk with Indicators of Socioeconomic Position on Mild Cognitive Impairment in the Heinz Nixdorf Recall Study.

J Alzheimers Dis 2021 Jun 28. Epub 2021 Jun 28.

Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany.

Background: The apolipoprotein E (APOE) ɛ4 allele is reported to be a strong genetic risk factor for mild cognitive impairment (MCI) and Alzheimer's disease (AD). Additional genetic loci have been detected that influence the risk for late-onset AD. As socioeconomic position (SEP) is also strongly related to cognitive decline, SEP has been suggested to be a possible modifier of the genetic effect on MCI.

Objective: To investigate whether APOEɛ4 and a genetic sum score of AD-associated risk alleles (GRSAD) interact with SEP indicators to affect MCI in a population-based cohort.

Methods: Using data of 3,834 participants of the Heinz Nixdorf Recall Study, APOEɛ4 and GRSAD by SEP interactions were assessed using logistic regression models, as well as SEP-stratified genetic association analysis. Interaction on additive scale was calculated using the relative excess risk due to interaction (RERI). All analysis were additionally stratified by sex.

Results: Indication for interaction on the additive scale was found between APOEɛ4 and low education on MCI (RERI: 0.52 [95% -confidence interval (CI): 0.01; 1.03]). The strongest genetic effects of the APOEɛ4 genotype on MCI were observed in groups of low education (Odds ratio (OR): 1.46 [95% -CI: 0.79; 2.63] for≤10 years of education versus OR: 1.00 [95% -CI: 0.43; 2.14] for≥18 years of education). Sex stratified results showed stronger effects in women. No indication for interaction between the GRSAD and SEP indicators on MCI was observed.

Conclusion: Results indicate that low education may have an impact on APOEɛ4 expression on MCI, especially among women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-210244DOI Listing
June 2021

LAMP-Seq enables sensitive, multiplexed COVID-19 diagnostics using molecular barcoding.

Nat Biotechnol 2021 Jun 29. Epub 2021 Jun 29.

Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, USA.

Frequent testing of large population groups combined with contact tracing and isolation measures will be crucial for containing Coronavirus Disease 2019 outbreaks. Here we present LAMP-Seq, a modified, highly scalable reverse transcription loop-mediated isothermal amplification (RT-LAMP) method. Unpurified biosamples are barcoded and amplified in a single heat step, and pooled products are analyzed en masse by sequencing. Using commercial reagents, LAMP-Seq has a limit of detection of ~2.2 molecules per µl at 95% confidence and near-perfect specificity for severe acute respiratory syndrome coronavirus 2 given its sequence readout. Clinical validation of an open-source protocol with 676 swab samples, 98 of which were deemed positive by standard RT-qPCR, demonstrated 100% sensitivity in individuals with cycle threshold values of up to 33 and a specificity of 99.7%, at a very low material cost. With a time-to-result of fewer than 24 h, low cost and little new infrastructure requirement, LAMP-Seq can be readily deployed for frequent testing as part of an integrated public health surveillance program.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41587-021-00966-9DOI Listing
June 2021

Differential DNA methylation and mRNA transcription in gingival tissues in periodontal health and disease.

J Clin Periodontol 2021 Jun 7. Epub 2021 Jun 7.

Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA.

Aim: We investigated differential DNA methylation in gingival tissues in periodontal health, gingivitis, and periodontitis, and its association with differential mRNA expression.

Materials And Methods: Gingival tissues were harvested from individuals and sites with clinically healthy and intact periodontium, gingivitis, and periodontitis. Samples were processed for differential DNA methylation and mRNA expression using the IlluminaEPIC (850 K) and the IlluminaHiSeq2000 platforms, respectively. Across the three phenotypes, we identified differentially methylated CpG sites and regions, differentially expressed genes (DEGs), and genes with concomitant differential methylation at their promoters and expression were identified. The findings were validated using our earlier databases using HG-U133Plus2.0Affymetrix microarrays and Illumina (450 K) methylation arrays.

Results: We observed 43,631 differentially methylated positions (DMPs) between periodontitis and health, and 536 DMPs between gingivitis and health (FDR < 0.05). On the mRNA level, statistically significant DEGs were observed only between periodontitis and health (n = 126). Twelve DEGs between periodontitis and health (DCC, KCNA3, KCNA2, RIMS2, HOXB7, PNOC, IRX1, JSRP1, TBX1, OPCML, CECR1, SCN4B) were also differentially methylated between the two phenotypes. Spearman correlations between methylation and expression in the EPIC/mRNAseq dataset were largely replicated in the 450 K/Affymetrix datasets.

Conclusions: Concomitant study of DNA methylation and gene expression patterns may identify genes whose expression is epigenetically regulated in periodontitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcpe.13504DOI Listing
June 2021

Common variants in Alzheimer's disease and risk stratification by polygenic risk scores.

Nat Commun 2021 06 7;12(1):3417. Epub 2021 Jun 7.

Servei de Neurologia, Hospital Universitari i Politècnic La Fe, Valencia, Spain.

Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22491-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184987PMC
June 2021

Pharmacogenetic association of diabetes-associated genetic risk score with rapid progression of coronary artery calcification following treatment with HMG-CoA-reductase inhibitors -results of the Heinz Nixdorf Recall Study.

Naunyn Schmiedebergs Arch Pharmacol 2021 Aug 22;394(8):1713-1725. Epub 2021 May 22.

Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany.

HMG-CoA-Reductase inhibitors (HMGRIs) are currently the most widely used group of drugs in patients with coronary artery disease (CAD) and are given preemptively to patients with high levels of cholesterol, including those with diabetes mellitus (DM). However, intake of HMGRIs also increases the progression of coronary artery calcification (CAC) and the risk of developing DM. This study aimed to investigate whether HMGRI intake interacts with the diabetes-associated genetic risk score (GRS) to affect CAC progression using data from the population-based Heinz Nixdorf Recall (HNR) study. CAC was measured in 3157 participants using electron-beam computed tomography twice, at baseline (CAC) and 5 years later (CAC). CAC progression was classified as slow, expected, or rapid based on predicted values. Weighted DM GRS was constructed using 100 diabetes mellitus-associated single nucleotide polymorphisms (SNPs). We used log-linear regression to evaluate the interaction of HMGRI intake with diabetes-associated GRS and individual SNPs on CAC progression (rapid vs. expected/slow), adjusting for age, sex, and log(CAC + 1). The prevalence of rapid CAC progression in the HNR study was 19.6%. We did not observe any association of the weighted diabetes mellitus GRS with the rapid progression of CAC (relative risk (RR) [95% confidence interval (95% CI)]: 1.01 [0.94; 1.10]). Furthermore, no indication of an interaction between GRS and HMGRI intake was observed (1.08 [0.83; 1.41]). Our analyses showed no indication that the impact of HMGRIs on CAC progression is significantly more severe in patients with a high genetic risk of developing DM than in those with a low GRS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-021-02100-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298241PMC
August 2021

Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology.

Nat Genet 2021 06 17;53(6):817-829. Epub 2021 May 17.

Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00857-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192451PMC
June 2021

Genetic factors influencing a neurobiological substrate for psychiatric disorders.

Transl Psychiatry 2021 03 29;11(1):192. Epub 2021 Mar 29.

Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany.

A retrospective meta-analysis of magnetic resonance imaging voxel-based morphometry studies proposed that reduced gray matter volumes in the dorsal anterior cingulate and the left and right anterior insular cortex-areas that constitute hub nodes of the salience network-represent a common substrate for major psychiatric disorders. Here, we investigated the hypothesis that the common substrate serves as an intermediate phenotype to detect genetic risk variants relevant for psychiatric disease. To this end, after a data reduction step, we conducted genome-wide association studies of a combined common substrate measure in four population-based cohorts (n = 2271), followed by meta-analysis and replication in a fifth cohort (n = 865). After correction for covariates, the heritability of the common substrate was estimated at 0.50 (standard error 0.18). The top single-nucleotide polymorphism (SNP) rs17076061 was associated with the common substrate at genome-wide significance and replicated, explaining 1.2% of the common substrate variance. This SNP mapped to a locus on chromosome 5q35.2 harboring genes involved in neuronal development and regeneration. In follow-up analyses, rs17076061 was not robustly associated with psychiatric disease, and no overlap was found between the broader genetic architecture of the common substrate and genetic risk for major depressive disorder, bipolar disorder, or schizophrenia. In conclusion, our study identified that common genetic variation indeed influences the common substrate, but that these variants do not directly translate to increased disease risk. Future studies should investigate gene-by-environment interactions and employ functional imaging to understand how salience network structure translates to psychiatric disorder risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01317-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007575PMC
March 2021

1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans.

Transl Psychiatry 2021 03 22;11(1):182. Epub 2021 Mar 22.

Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01213-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985307PMC
March 2021

DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population.

DNA Repair (Amst) 2021 05 27;101:103079. Epub 2021 Feb 27.

Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany.

Nonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations. In the present study, we used the result of our published genome-wide association studies to extract data on 153 DNA repair genes from 866 nonsmoking persons who had no known occupational exposure to genotoxic substances. Considering an arbitrary cut-off level of P< 5 × 10, single nucleotide polymorphisms (SNPs) tagging 22 DNA repair genes were significantly associated with CAs and they remained significant at P < 0.05 when adjustment for multiple comparisons was done by the Binomial Sequential Goodness of Fit test. Nucleotide excision repair pathway genes showed most associations with 6 genes. Among the associated genes were several in which mutations manifest CA phenotype, including Fanconi anemia, WRN, BLM and genes that are important in maintaining genome stability, as well as PARP2 and mismatch repair genes. RPA2 and RPA3 may participate in telomere maintenance through the synthesis of the C strand of telomeres. Errors in NHEJ1 function may lead to translocations. The present results show associations with some genes with known CA phenotype and suggest other pathways with mechanistic rationale for the formation of CAs in healthy nonsmoking population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dnarep.2021.103079DOI Listing
May 2021

Generation of integration-free induced pluripotent stem cells from healthy individuals.

Stem Cell Res 2021 05 24;53:102269. Epub 2021 Feb 24.

Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland. Electronic address:

Ten human induced pluripotent stem cell (iPSC) lines have been derived from five healthy controls matched to a study including Attention-Deficit Hyperactivity Disorder patients (ADHD). Both female and male children and adolescents aged 6-18 years were recruited. Isolated keratinocyte cells from the participants were reprogrammed into iPSCs using non-integrating Sendai virus to deliver the reprogramming factors Oct3/4, Sox2, Klf4 and cMyc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2021.102269DOI Listing
May 2021

Generation of integration-free induced pluripotent stem cell lines from four pediatric ADHD patients.

Stem Cell Res 2021 05 24;53:102268. Epub 2021 Feb 24.

Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland. Electronic address:

Human induced pluripotent stem cell (iPSC) lines have been derived from four male patients with childhood attention-deficit hyperactivity disorder (ADHD). Children and adolescents between the ages 6 and 18 suffering from ADHD were recruited for this work. Isolated keratinocytes or peripheral blood mononuclear cells from the participants were reprogrammed into iPSCs using non-integrating Sendai virus to deliver the reprogramming factors Oct3/4, Sox2, Klf4 and c-Myc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2021.102268DOI Listing
May 2021

Single- and Multimarker Genome-Wide Scans Evidence Novel Genetic Risk Modifiers for Venous Thromboembolism.

Thromb Haemost 2021 Feb 16. Epub 2021 Feb 16.

Institute for Clinical Chemistry and Coagulation Center, University Hospital Schleswig Holstein, Kiel/Lübeck, Germany.

Previous genome-wide association studies (GWASs) have established several susceptibility genes for venous thromboembolism (VTE) and suggested many others. However, a large proportion of the genetic variance in VTE remains unexplained. Here, we report genome-wide single- and multimarker as well as gene-level associations with VTE in 964 cases and 899 healthy controls of European ancestry. We report 19 loci at the genome-wide level of association ( ≤ 5 × 10). Our results add to the strong support for the association of genetic variants in , , and with VTE, and identify several loci that have not been previously associated with VTE. Altogether, our novel findings suggest that 20 susceptibility genes for VTE were newly discovered by our study. These genes may impact the production and prothrombotic functions of platelets, endothelial cells, and white and red blood cells. Moreover, the majority of these genes have been previously associated with cardiovascular diseases and/or risk factors for VTE. Future studies are warranted to validate our findings and to investigate the shared genetic architecture with susceptibility factors for other cardiovascular diseases impacting VTE risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0041-1723988DOI Listing
February 2021

Exome-Wide Association Study Identifies FN3KRP and PGP as New Candidate Longevity Genes.

J Gerontol A Biol Sci Med Sci 2021 Apr;76(5):786-795

Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Germany.

Despite enormous research efforts, the genetic component of longevity has remained largely elusive. The investigation of common variants, mainly located in intronic or regulatory regions, has yielded only little new information on the heritability of the phenotype. Here, we performed a chip-based exome-wide association study investigating 62 488 common and rare coding variants in 1248 German long-lived individuals, including 599 centenarians and 6941 younger controls (age < 60 years). In a single-variant analysis, we observed an exome-wide significant association between rs1046896 in the gene fructosamine-3-kinase-related-protein (FN3KRP) and longevity. Noteworthy, we found the longevity allele C of rs1046896 to be associated with an increased FN3KRP expression in whole blood; a database look-up confirmed this effect for various other human tissues. A gene-based analysis, in which potential cumulative effects of common and rare variants were considered, yielded the gene phosphoglycolate phosphatase (PGP) as another potential longevity gene, though no single variant in PGP reached the discovery p-value (1 × 10E-04). Furthermore, we validated the previously reported longevity locus cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1). Replication of our results in a French longevity cohort was only successful for rs1063192 in CDKN2B-AS1. In conclusion, we identified 2 new potential candidate longevity genes, FN3KRP and PGP which may influence the phenotype through their role in metabolic processes, that is, the reverse glycation of proteins (FN3KRP) and the control of glycerol-3-phosphate levels (PGP).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glab023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087267PMC
April 2021

Clinical and genetic differences between bipolar disorder type 1 and 2 in multiplex families.

Transl Psychiatry 2021 01 11;11(1):31. Epub 2021 Jan 11.

Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

The two major subtypes of bipolar disorder (BD), BD-I and BD-II, are distinguished based on the presence of manic or hypomanic episodes. Historically, BD-II was perceived as a less severe form of BD-I. Recent research has challenged this concept of a severity continuum. Studies in large samples of unrelated patients have described clinical and genetic differences between the subtypes. Besides an increased schizophrenia polygenic risk load in BD-I, these studies also observed an increased depression risk load in BD-II patients. The present study assessed whether such clinical and genetic differences are also found in BD patients from multiplex families, which exhibit reduced genetic and environmental heterogeneity. Comparing 252 BD-I and 75 BD-II patients from the Andalusian Bipolar Family (ABiF) study, the clinical course, symptoms during depressive and manic episodes, and psychiatric comorbidities were analyzed. Furthermore, polygenic risk scores (PRS) for BD, schizophrenia, and depression were assessed. BD-I patients not only suffered from more severe symptoms during manic episodes but also more frequently showed incapacity during depressive episodes. A higher BD PRS was significantly associated with suicidal ideation. Moreover, BD-I cases exhibited lower depression PRS. In line with a severity continuum from BD-II to BD-I, our results link BD-I to a more pronounced clinical presentation in both mania and depression and indicate that the polygenic risk load of BD predisposes to more severe disorder characteristics. Nevertheless, our results suggest that the genetic risk burden for depression also shapes disorder presentation and increases the likelihood of BD-II subtype development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-01146-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801527PMC
January 2021

Energy Metabolism Disturbances in Cell Models of PARK2 CNV Carriers with ADHD.

J Clin Med 2020 Dec 18;9(12). Epub 2020 Dec 18.

Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, D-60528 Frankfurt, Germany.

The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of dysregulation in mitochondrial dynamics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jcm9124092DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766864PMC
December 2020

Mendelian Randomization Study on Amino Acid Metabolism Suggests Tyrosine as Causal Trait for Type 2 Diabetes.

Nutrients 2020 Dec 19;12(12). Epub 2020 Dec 19.

Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.

Circulating levels of branched-chain amino acids, glycine, or aromatic amino acids have been associated with risk of type 2 diabetes. However, whether those associations reflect causal relationships or are rather driven by early processes of disease development is unclear. We selected diabetes-related amino acid ratios based on metabolic network structures and investigated causal effects of these ratios and single amino acids on the risk of type 2 diabetes in two-sample Mendelian randomization studies. Selection of genetic instruments for amino acid traits relied on genome-wide association studies in a representative sub-cohort (up to 2265 participants) of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study and public data from genome-wide association studies on single amino acids. For the selected instruments, outcome associations were drawn from the DIAGRAM (DIAbetes Genetics Replication And Meta-analysis, 74,124 cases and 824,006 controls) consortium. Mendelian randomization results indicate an inverse association for a per standard deviation increase in ln-transformed tyrosine/methionine ratio with type 2 diabetes (OR = 0.87 (0.81-0.93)). Multivariable Mendelian randomization revealed inverse association for higher log-transformed tyrosine levels with type 2 diabetes (OR = 0.19 (0.04-0.88)), independent of other amino acids. Tyrosine might be a causal trait for type 2 diabetes independent of other diabetes-associated amino acids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu12123890DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766372PMC
December 2020

Infection fatality rate of SARS-CoV2 in a super-spreading event in Germany.

Nat Commun 2020 11 17;11(1):5829. Epub 2020 Nov 17.

German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Braunschweig, Germany.

A SARS-CoV2 super-spreading event occurred during carnival in a small town in Germany. Due to the rapidly imposed lockdown and its relatively closed community, this town was seen as an ideal model to investigate the infection fatality rate (IFR). Here, a 7-day seroepidemiological observational study was performed to collect information and biomaterials from a random, household-based study population. The number of infections was determined by IgG analyses and PCR testing. We found that of the 919 individuals with evaluable infection status, 15.5% (95% CI:[12.3%; 19.0%]) were infected. This is a fivefold higher rate than the reported cases for this community (3.1%). 22.2% of all infected individuals were asymptomatic. The estimated IFR was 0.36% (95% CI:[0.29%; 0.45%]) for the community and 0.35% [0.28%; 0.45%] when age-standardized to the population of the community. Participation in carnival increased both infection rate (21.3% versus 9.5%, p < 0.001) and number of symptoms (estimated relative mean increase 1.6, p = 0.007). While the infection rate here is not representative for Germany, the IFR is useful to estimate the consequences of the pandemic in places with similar healthcare systems and population characteristics. Whether the super-spreading event not only increases the infection rate but also affects the IFR requires further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19509-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672059PMC
November 2020

Impact of genetic polymorphisms in kinetochore and spindle assembly genes on chromosomal aberration frequency in healthy humans.

Mutat Res 2020 Oct - Dec;858-860:503253. Epub 2020 Sep 15.

Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.

Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk. We evaluated associations between inherited genetic variants in 33 mitotic checkpoint genes and the frequency of chromosomal aberrations (CAs) in the presence and absence of environmental genotoxic exposure. Associations with both chromosome and chromatid type of aberrations were evaluated in two cohorts of healthy individuals, namely an exposed and a reference group consisting of 607 and 866 individuals, respectively. Binary logistic and linear regression analyses were performed for the association studies. Bonferroni-corrected significant p-value was 5 × 10 for 99 tests based on the number of analyzed genes and phenotypes. In the reference group the most prominent associations were found with variants in CCNB1, a master regulator of mitosis, and in genes involved in kinetochore function, including CENPH and TEX14, whereas in the exposed group the main association was found with variants in TTK, also an important gene in kinetochore function. How the identified variants may affect the fidelity of mitotic checkpoint remains to be investigated, however, the present study suggests that genetic variation may partly explain interindividual variation in the formation of CAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2020.503253DOI Listing
March 2021

Integrative genomic analysis of pediatric T-cell lymphoblastic lymphoma reveals candidates of clinical significance.

Blood 2021 Apr;137(17):2347-2359

Department of Paediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany.

T-cell lymphoblastic lymphoma (T-LBL) is a heterogeneous malignancy of lymphoblasts committed to T-cell lineage. The dismal outcomes (15%-30%) after T-LBL relapse warrant establishing risk-based treatment. To our knowledge, this study presents the first comprehensive, systematic, integrated, genome-wide analysis including relapsed cases that identifies molecular markers of prognostic relevance for T-LBL. NOTCH1 was identified as the putative driver for T-LBL. An activated NOTCH/PI3K-AKT signaling axis and alterations in cell cycle regulators constitute the core oncogenic program for T-LBL. Mutated KMT2D was identified as a prognostic marker. The cumulative incidence of relapse was 47% ± 17% in patients with KMT2D mutations, compared with 14% ± 3% in wild-type KMT2D. Structural analysis of the mutated domains of KMT2D revealed a plausible impact on structure and functional consequences. These findings provide new insights into the pathogenesis of T-LBL, including high translational potential. The ongoing LBL 2018 trial (www.clinicaltrials.gov #NCT04043494) allows for prospective validation and subsequent fine tuning of the stratification criteria for T-LBL risk groups to improve survival of pediatric patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2020005381DOI Listing
April 2021

Shared Genetics of Multiple System Atrophy and Inflammatory Bowel Disease.

Mov Disord 2021 02 27;36(2):449-459. Epub 2020 Oct 27.

Rita Lila Weston Institute, University College London, London, UK.

Background: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci.

Methods: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls.

Results: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts.

Conclusion: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.28338DOI Listing
February 2021

Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia.

Mol Psychiatry 2020 Oct 14. Epub 2020 Oct 14.

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience and Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, The Netherlands.

Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40-60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p  < 2.8 × 10) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20-25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at p = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p  = 8 × 10), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10), educational attainment (0.86[0.82; 0.91]; p = 2 × 10), and intelligence (0.72[0.68; 0.76]; p = 9 × 10). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-00898-xDOI Listing
October 2020

Gene expression is stable in a complete CIB1 knockout keratinocyte model.

Sci Rep 2020 09 11;10(1):14952. Epub 2020 Sep 11.

Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.

Epidermodysplasia verruciformis (EV) is a genodermatosis characterized by the inability of keratinocytes to control cutaneous β-HPV infection and a high risk for non-melanoma skin cancer (NMSC). Bi-allelic loss of function variants in TMC6, TMC8, and CIB1 predispose to EV. The correlation between these proteins and β-HPV infection is unclear. Its elucidation will advance the understanding of HPV control in human keratinocytes and development of NMSC. We generated a cell culture model by CRISPR/Cas9-mediated deletion of CIB1 to study the function of CIB1 in keratinocytes. Nine CIB1 knockout and nine mock control clones were generated originating from a human keratinocyte line. We observed small changes in gene expression as a result of CIB1 knockout, which is consistent with the clearly defined phenotype of EV patients. This suggests that the function of human CIB1 in keratinocytes is limited and involves the restriction of β-HPV. The presented model is useful to investigate CIB1 interaction with β-HPV in future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-71889-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486891PMC
September 2020

Risk prediction for coronary heart disease by a genetic risk score - results from the Heinz Nixdorf Recall study.

BMC Med Genet 2020 09 10;21(1):178. Epub 2020 Sep 10.

Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany.

Background: A Genetic risk score for coronary artery disease (CAD) improves the ability of predicting coronary heart disease (CHD). It is unclear whether i) the use of a CAD genetic risk score is superior to the measurement of coronary artery calcification (CAC) for CHD risk assessment and ii) the CHD risk assessment using a CAD genetic risk score differs between men and women.

Methods: We included 4041 participants (age-range: 45-76 years, 1919 men) of the Heinz Nixdorf Recall study without CHD or stroke at baseline. A standardized weighted CAD genetic risk score was constructed using 70 known genetic variants. The risk score was divided into quintiles (Q1-Q5). We specified low (Q1), intermediate (Q2-Q4) and high (Q5) genetic risk groups. Incident CHD was defined as fatal and non-fatal myocardial infarction, stroke and coronary death. The association between the genetic risk score and genetic risk groups with incident CHD was assessed using Cox models to estimate hazard ratios (HR) and 95%-confidence intervals (CI). The models were adjusted by age and sex (Model1), as well as by established CHD risk factors (RF) and CAC (Model2). The analyses were further stratified by sex and controlled for multiple testing.

Results: During a median follow-up time of 11.6 ± 3.7 years, 343 participants experienced CHD events (219 men). Per-standard deviation (SD) increase in the genetic risk score was associated with 18% increased risk for incident CHD (Model1: p = 0.002) which did not change after full adjustment (Model2: HR = 1.18 per-SD (p = 0.003)). In Model2 we observed a 60% increased CHD risk in the high (p = 0.009) compared to the low genetic risk group. Stratifying by sex, only men showed statistically significantly higher risk for CHD (Model2: HR = 1.23 per-SD (p = 0.004); intermediate: HR = 1.52 (p = 0.04) and high: HR = 1.88 (p = 0.008)) with no statistically significant risk observed in women.

Conclusion: Our results suggest that the CAD genetic risk score could be useful for CHD risk prediction, at least in men belonging to the higher genetic risk group, but it does not outbalance the value of CT-based quantification of CAC which works independently on both men and women and allows better risk stratification in both the genders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12881-020-01113-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487988PMC
September 2020

Desaturase Activity and the Risk of Type 2 Diabetes and Coronary Artery Disease: A Mendelian Randomization Study.

Nutrients 2020 Jul 28;12(8). Epub 2020 Jul 28.

Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.

Estimated Δ5-desaturase (D5D) and Δ6-desaturase (D6D) are key enzymes in metabolism of polyunsaturated fatty acids (PUFA) and have been associated with cardiometabolic risk; however, causality needs to be clarified. We applied two-sample Mendelian randomization (MR) approach using a representative sub-cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study and public data from DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) and Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) genome-wide association studies (GWAS). Furthermore, we addressed confounding by linkage disequilibrium (LD) as all instruments from (encoding D5D) are in LD with (encoding D6D) variants. Our univariable MRs revealed risk-increasing total effects of both, D6D and D5D on type 2 diabetes (T2DM) risk; and risk-increasing total effect of D6D on risk of coronary artery disease (CAD). The multivariable MR approach could not unambiguously allocate a direct causal effect to either of the individual desaturases. Our results suggest that D6D is causally linked to cardiometabolic risk, which is likely due to downstream production of fatty acids and products resulting from high D6D activity. For D5D, we found indication for causal effects on T2DM and CAD, which could, however, still be confounded by LD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu12082261DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469057PMC
July 2020

Advanced paternal age as a risk factor for neurodevelopmental disorders: a translational study.

Mol Autism 2020 06 23;11(1):54. Epub 2020 Jun 23.

Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany.

Advanced paternal age (APA) is a risk factor for several neurodevelopmental disorders, including autism and schizophrenia. The potential mechanisms conferring this risk are poorly understood. Here, we show that the personality traits schizotypy and neuroticism correlated with paternal age in healthy subjects (N = 677). Paternal age was further positively associated with gray matter volume (VBM, N = 342) in the right prefrontal and the right medial temporal cortex. The integrity of fiber tracts (DTI, N = 222) connecting these two areas correlated positively with paternal age. Genome-wide methylation analysis in humans showed differential methylation in APA individuals, linking APA to epigenetic mechanisms. A corresponding phenotype was obtained in our rat model. APA rats displayed social-communication deficits and emitted fewer pro-social ultrasonic vocalizations compared to controls. They further showed repetitive and stereotyped patterns of behavior, together with higher anxiety during early development. At the neurobiological level, microRNAs miR-132 and miR-134 were both differentially regulated in rats and humans depending on APA. This study demonstrates associations between APA and social behaviors across species. They might be driven by changes in the expression of microRNAs and/or epigenetic changes regulating neuronal plasticity, leading to brain morphological changes and fronto-hippocampal connectivity, a network which has been implicated in social interaction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13229-020-00345-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310295PMC
June 2020

Replication of a hippocampus specific effect of the tescalcin regulating variant rs7294919 on gray matter structure.

Eur Neuropsychopharmacol 2020 07 23;36:10-17. Epub 2020 May 23.

Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany. Electronic address:

While the hippocampus remains a region of high interest for neuropsychiatric research, the precise contributors to hippocampal morphometry are still not well understood. We and others previously reported a hippocampus specific effect of a tescalcin gene (TESC) regulating single nucleotide polymorphism (rs7294919) on gray matter volume. Here we aimed to replicate and extend these findings. Two complementary morphometric approaches (voxel based morphometry (VBM) and automated volumetric segmentation) were applied in a well-powered cohort from the Marburg-Münster Affective Disorder Cohort Study (MACS) including N=1137 participants (n=636 healthy controls, n=501 depressed patients). rs7294919 homozygous T-allele genotype was significantly associated with lower hippocampal gray matter density as well as with reduced hippocampal volume. Exploratory whole brain VBM analyses revealed no further associations with gray matter volume outside the hippocampus. No interaction effects of rs7294919 with depression nor with childhood trauma on hippocampal morphometry could be detected. Hippocampal subfield analyses revealed similar effects of rs7294919 in all hippocampal subfields. In sum, our results replicate a hippocampus specific effect of rs7294919 on brain structure. Due to the robust evidence for a pronounced association between the reported polymorphism and hippocampal morphometry, future research should consider investigating the potential clinical and functional relevance of the reported association.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2020.03.021DOI Listing
July 2020
-->