Publications by authors named "Peiwen Fu"

3 Publications

  • Page 1 of 1

HucMSC exosome-delivered 14-3-3ζ alleviates ultraviolet radiation-induced photodamage via SIRT1 pathway modulation.

Aging (Albany NY) 2021 Apr 21;13(8):11542-11563. Epub 2021 Apr 21.

Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.

Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-ex) are nano-sized membrane-bound vesicles that have been reported to facilitate skin regeneration and repair. However, the roles played by hucMSC-ex in ultraviolet (UV) radiation-induced skin photodamage and the underlying mechanisms remain unknown. To investigate the functions of hucMSC-ex in a rat model of acute skin photodamage, immunofluorescence and immunohistochemical staining, quantitative real-time-polymerase chain reaction (qRT-PCR), western blot, and gene silencing assays were performed. We found that the subcutaneous injection of hucMSC-ex elicited antioxidant and anti-inflammatory effects against UV radiation-induced DNA damage and apoptosis. Further studies showed that the sirtuin 1 (SIRT1) expression level in skin keratinocytes (HaCaT) decreased in a time- and dose-dependent manner under UV radiation induced-oxidative stress conditions, which could be reversed by treatment with hucMSC-ex. The activation of SIRT1 significantly attenuated UV- and HO-induced cytotoxic damage by inhibiting oxidative stress and promoting the activation of autophagy. Our study found that 14-3-3ζ protein, which was delivered by hucMSC-ex, exerted a cytoprotective function via the modulation of a SIRT1-dependent antioxidant pathway. Collectively, our findings indicated that hucMSC-ex might represent a new potential agent for preventing or treating UV radiation-induced skin photodamage and aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.202851DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109102PMC
April 2021

Differentiation of COVID-19 from seasonal influenza: A multicenter comparative study.

J Med Virol 2021 03 30;93(3):1512-1519. Epub 2020 Sep 30.

Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.

As coronavirus disease 2019 (COVID-19) crashed into the influenza season, clinical characteristics of both infectious diseases were compared to make a difference. We reported 211 COVID-19 patients and 115 influenza patients as two separate cohorts at different locations. Demographic data, medical history, laboratory findings, and radiological characters were summarized and compared between two cohorts, as well as between patients at the intensive care unit (ICU) andnon-ICU within the COVID-19 cohort. For all 326 patients, the median age was 57.0 (interquartile range: 45.0-69.0) and 48.2% was male, while 43.9% had comorbidities that included hypertension, diabetes, bronchitis, and heart diseases. Patients had cough (75.5%), fever (69.3%), expectoration (41.1%), dyspnea (19.3%), chest pain (18.7%), and fatigue (16.0%), etc. Both viral infections caused substantial blood abnormality, whereas the COVID-19 cohort showed a lower frequency of leukocytosis, neutrophilia, or lymphocytopenia, but a higher chance of creatine kinase elevation. A total of 7.7% of all patients possessed no abnormal sign in chest computed tomography (CT) scans. For both infections, pulmonary lesions in radiological findings did not show any difference in their location or distribution. Nevertheless, compared to the influenza cohort, the COVID-19 cohort presented more diversity in CT features, where certain specific CT patterns showed significantly more frequency, including consolidation, crazy paving pattern, rounded opacities, air bronchogram, tree-in-bud sign, interlobular septal thickening, and bronchiolar wall thickening. Differentiable clinical manifestations and CT patterns may help diagnose COVID-19 from influenza and gain a better understanding of both contagious respiratory illnesses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.26469DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461066PMC
March 2021

Rapid identification and antibiotic susceptibility test of pathogens in blood based on magnetic separation and surface-enhanced Raman scattering.

Mikrochim Acta 2019 06 27;186(7):475. Epub 2019 Jun 27.

Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.

An effective surface-enhanced Raman scattering (SERS) method is presented for the rapid identification and drug sensitivity analysis of pathogens in blood. In a first step, polyethyleneimine-modified magnetic microspheres (FeO@PEI) were used to enrich bacteria from blood samples. Next, the FeO@PEI@bacteria complex was cultured on both ordinary and drug-sensitive plates. Lastly, the SERS spectra of single colonies were acquired in order to identify different pathogens and their resistant strains by comparison with established standardized bacterial SERS spectras and orthogonal partial least squares discriminant analysis (OPLS-DA) method. Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa and their resistant strains were used to evaluate the performance of the SERS method. The results demonstrate that the method can accurately detect and identify all the tested sensitive and drug-resistant strains of bacteria, including 77 clinical blood infection samples. The method provides a way for rapid identification and susceptibility test of pathogens, and has great potential to replace currently used time-consuming methods. Graphical abstract Schematic presentation of a method for the rapid identification and drug sensitivity analysis of pathogens in blood. It is based on a combination of magnetic separation, SERS fingerprint analysis and orthogonal partial least squares discriminant analysis (OPLS-DA).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-019-3571-xDOI Listing
June 2019