Publications by authors named "Peijun Xin"

2 Publications

  • Page 1 of 1

Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea.

Nanotechnology 2021 Jul 2;32(38). Epub 2021 Jul 2.

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China.

Oxygen evolution reaction (OER) and urea oxidation reaction (UOR) play important roles in the fields of hydrogen energy production and pollution treatment. Herein, a facile one-step chemical etching strategy is provided for fabricating one-dimensional hierarchical nanorods array composed of CoFe layered double hydroxide (LDH)/metal-organic frameworks (MOFs) supported on carbon cloth as efficient and stable OER and UOR catalysts. By precisely controlling the etching rate, the ligands from Co-MOFs are partially removed, the corresponding metal centers then coordinate with hydroxyl ions to generate ultrathin amorphous CoFe LDH nanosheets. The resultant CoFe LDH/MOFs catalyst possesses large active surface area, enhanced conductivity and extended electron/mass transfer channels, which are beneficial for catalytic reactions. Additionally, the intimate contact between CoFe LDH and MOFs modulates the local electronic structure of the catalytic active site, leading to enhanced adsorption of oxygen-containing intermediates to facilitate fast electrocatalytic reaction. As a result, the optimized CoFe LDH/MOF-0.06 exhibits superior OER activity with a low overpotential of 276 at a current density of 10 mA cmwith long-term durability. Additionally, it merely requires a voltage of 1.45 V to obtain 10 mA cmin 1 M KOH solution with 0.33 urea and is 56 mV lower than the one in pure KOH. The work presented here may hew out a brand-new route to construct multi-functional electrocatalysts for water splitting, COreduction, nitrogen reduction reactions and so on.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac0b65DOI Listing
July 2021

Integrated Design of Hierarchical [email protected]@[email protected] Nanobox as Anode Material for Enhanced Lithium Storage Performance.

ACS Appl Mater Interfaces 2020 Apr 17;12(17):19768-19777. Epub 2020 Apr 17.

Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

Transition-metal oxides (TMOs) are potential candidates for anode materials of lithium-ion batteries (LIBs) due to their high theoretical capacity (∼1000 mA h/g) and enhanced safety from suppressing the formation of lithium dendrites. However, the poor electron conductivity and the large volume expansion during lithiation/delithiation processes are still the main hurdles for the practical usage of TMOs as anode materials. In this work, the [email protected]@[email protected] hierarchical nanobox (CNMN) is then proposed and fabricated to solve those issues. The as-prepared nanobox contains hollow cubic CoSnO as a core and dual N-doped carbon-"sandwiched" MnO particles as a shell. As anode materials of LIBs, the hollow and carbon interlayer structures effectively accommodate the volume expansion while dual active TMOs of CoSnO and MnO efficiently increase the specific capacity. Notably, the dual-layer structure of N-doped carbons plays a critical functional role in the incorporated composites, where the inner layer serves as a reaction substrate and a spatial barrier and the outer layer offers electron conductivity, enabling more effective involvement of active anode materials in lithium storage, as well as maintaining their high activity during lithium cycling. Subsequently, the as-prepared CNMN exhibits a high specific capacity of 1195 mA h/g after the 200th cycle at 0.1C and an excellent stable reversible capacity of about 876 mA h/g after the 300th cycle at 0.5C with only 0.07 mA h/g fade per cycle after 300 cycles. Even after a 250 times fast charging/discharging cycle both at 5C, it still retains a reversible capacity of 422.6 mA h/g. We ascribe the enhanced lithium storage performances to the novel hierarchical architectures achieved from the rational design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b22368DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304665PMC
April 2020
-->