Publications by authors named "Paul Veazey"

3 Publications

  • Page 1 of 1

Chromosome-wide analysis of gene function by RNA interference in the african trypanosome.

Eukaryot Cell 2006 Sep;5(9):1539-49

School of Biological Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom.

Trypanosomatids of the order Kinetoplastida are major contributors to global disease and morbidity, and understanding their basic biology coupled with the development of new drug targets represents a critical need. Additionally, trypanosomes are among the more accessible divergent eukaryote experimental systems. The genome of Trypanosoma brucei contains 8,131 predicted open reading frames (ORFs), of which over half have no known homologues beyond the Kinetoplastida and a substantial number of others are poorly defined by in silico analysis. Thus, a major challenge following completion of the T. brucei genome sequence is to obtain functional data for all trypanosome ORFs. As T. brucei is more experimentally tractable than the related Trypanosoma cruzi and Leishmania spp. and shares >75% of their genes, functional analysis of T. brucei has the potential to inform a range of parasite biology. Here, we report methods for systematic mRNA ablation by RNA interference (RNAi) and for phenotypic analysis, together with online data dissemination. This represents the first systematic analysis of gene function in a parasitic organism. In total, 210 genes have been targeted in the bloodstream form parasite, representing an essentially complete phenotypic catalogue of chromosome I together with a validation set. Over 30% of the chromosome I genes generated a phenotype when targeted by RNAi; most commonly, this affected cell growth, viability, and/or cell cycle progression. RNAi against approximately 12% of ORFs was lethal, and an additional 11% had growth defects but retained short-term viability in culture. Although we found no evidence for clustering or a bias towards widely evolutionarily conserved genes within the essential ORF cohort, the putative chromosome I centromere is adjacent to a domain containing genes with no associated phenotype. Involvement of such a large proportion of genes in robust growth in vitro indicates that a high proportion of the expressed trypanosome genome is required for efficient propagation; many of these gene products represent potential drug targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/EC.00141-06DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1563588PMC
September 2006

New approaches to the microscopic imaging of Trypanosoma brucei.

Microsc Microanal 2004 Oct;10(5):621-36

Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK.

Protozoan parasites are fearsome pathogens responsible for a substantial proportion of human mortality, morbidity, and economic hardship. The principal disease agents are members of the orders Apicomplexa (Plasmodium, Toxoplasma, Eimeria) and Kinetoplastida (Trypanosomes, Leishmania). The majority of humans are at risk from infection from one or more of these organisms, with profound effects on the economy, social structure and quality of life in endemic areas; Plasmodium itself accounts for over one million deaths per annum, and an estimated 4 x 10(7) disability-adjusted life years (DALYs), whereas the Kinetoplastida are responsible for over 100,000 deaths per annum and 4 x 10(6) DALYs. Current control strategies are failing due to drug resistance and inadequate implementation of existing public health strategies. Trypanosoma brucei, the African Trypanosome, has emerged as a favored model system for the study of basic cell biology in Kinetoplastida, because of several recent technical advances (transfection, inducible expression systems, and RNA interference), and these advantages, together with genome sequencing efforts are widely anticipated to provide new strategies of therapeutic intervention. Here we describe a suite of methods that have been developed for the microscopic analysis of T. brucei at the light and ultrastructural levels, an essential component of analysis of gene function and hence identification of therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927604040942DOI Listing
October 2004

Mechanism of genetic exchange in American trypanosomes.

Nature 2003 Feb;421(6926):936-9

Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.

The kinetoplastid Protozoa are responsible for devastating diseases. In the Americas, Trypanosoma cruzi is the agent of Chagas' disease--a widespread disease transmissible from animals to humans (zoonosis)--which is transmitted by exposure to infected faeces of blood-sucking triatomine bugs. The presence of genetic exchange in T. cruzi and in Leishmania is much debated. Here, by producing hybrid clones, we show that T. cruzi has an extant capacity for genetic exchange. The mechanism is unusual and distinct from that proposed for the African trypanosome, Trypanosoma brucei. Two biological clones of T. cruzi were transfected to carry different drug-resistance markers, and were passaged together through the entire life cycle. Six double-drug-resistant progeny clones, recovered from the mammalian stage of the life cycle, show fusion of parental genotypes, loss of alleles, homologous recombination, and uniparental inheritance of kinetoplast maxicircle DNA. There are strong genetic parallels between these experimental hybrids and the genotypes among natural isolates of T. cruzi. In this instance, aneuploidy through nuclear hybridization results in recombination across far greater genetic distances than mendelian genetic exchange. This mechanism also parallels genome duplication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature01438DOI Listing
February 2003
-->