Publications by authors named "Paul Sweet"

3 Publications

  • Page 1 of 1

Demographic reconstruction from ancient DNA supports rapid extinction of the great auk.

Elife 2019 11 26;8. Epub 2019 Nov 26.

Department of Anatomy, University of Otago, Dunedin, New Zealand.

The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16 century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.47509DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879203PMC
November 2019

Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon.

BMC Evol Biol 2018 08 30;18(1):128. Epub 2018 Aug 30.

Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.

Background: Coalescent methods that use multi-locus sequence data are powerful tools for identifying putatively reproductively isolated lineages, though this approach has rarely been used for the study of microbial groups that are likely to harbor many unrecognized species. Among microbial symbionts, integrating genetic species delimitation methods with trait data that could indicate reproductive isolation, such as host specificity data, has rarely been used despite its potential to inform species limits. Here we test the ability of an integrative approach combining genetic and host specificity data to delimit species within the avian malaria parasite genus Leucocytozoon in central Alaska.

Results: We sequenced seven nuclear loci for 69 Leucocytozoon samples and used multiple species delimitation methods (GMYC and BPP models), tested for differences in host infection patterns among putative species based on 406 individual infections, and characterized parasite morphology. We found that cryptic morphology has masked a highly diverse Leucocytozoon assemblage, with most species delimitation methods recovering support for at least 21 separate species that occur sympatrically and have divergent host infection patterns. Reproductive isolation among putative species appears to have evolved despite low mtDNA divergence, and in one instance two Leucocytozoon cytb haplotypes that differed by a single base pair (~ 0.2% divergence) were supported as separate species. However, there was no consistent association between mtDNA divergence and species limits. Among cytb haplotypes that differed by one to three base pairs we observed idiosyncratic patterns of nuclear and ecological divergence, with cytb haplotype pairs found to be either conspecific, reproductively isolated with no divergence in host specificity, or reproductively isolated with divergent patterns of host specialization.

Conclusion: Integrating multi-locus genetic species delimitation methods and non-traditional ecological data types such as host specificity provide a novel view of the diversity of avian malaria parasites that has been missed previously using morphology and mtDNA barcodes. Species delimitation methods show that Leucocytozoon is highly species-rich in Alaska, and the genus is likely to harbor extraordinary species-level diversity worldwide. Integrating genetic and ecological data will be an important approach for understanding the diversity and evolutionary history of microbial symbionts moving forward.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12862-018-1242-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117968PMC
August 2018

Widespread gene flow between oceans in a pelagic seabird species complex.

Mol Ecol 2017 Oct 22;26(20):5716-5728. Epub 2017 Sep 22.

Institute of Zoology, Zoological Society London, London, UK.

Global-scale gene flow is an important concern in conservation biology as it has the potential to either increase or decrease genetic diversity in species and populations. Although many studies focus on the gene flow between different populations of a single species, the potential for gene flow and introgression between species is understudied, particularly in seabirds. The only well-studied example of a mixed-species, hybridizing population of petrels exists on Round Island, in the Indian Ocean. Previous research assumed that Round Island represents a point of secondary contact between Atlantic (Pterodroma arminjoniana) and Pacific species (Pterodroma neglecta and Pterodroma heraldica). This study uses microsatellite genotyping and tracking data to address the possibility of between-species hybridization occurring outside the Indian Ocean. Dispersal and gene flow spanning three oceans were demonstrated between the species in this complex. Analysis of migration rates estimated using bayesass revealed unidirectional movement of petrels from the Atlantic and Pacific into the Indian Ocean. Conversely, structure analysis revealed gene flow between species of the Atlantic and Pacific oceans, with potential three-way hybrids occurring outside the Indian Ocean. Additionally, geolocation tracking of Round Island petrels revealed two individuals travelling to the Atlantic and Pacific. These results suggest that interspecific hybrids in Pterodroma petrels are more common than was previously assumed. This study is the first of its kind to investigate gene flow between populations of closely related Procellariiform species on a global scale, demonstrating the need for consideration of widespread migration and hybridization in the conservation of threatened seabirds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.14330DOI Listing
October 2017