Publications by authors named "Paul Kiptoo"

26 Publications

  • Page 1 of 1

Noninvasive Brain Delivery and Efficacy of BDNF to Stimulate Neuroregeneration and Suppression of Disease Relapse in EAE Mice.

Mol Pharm 2020 02 31;17(2):404-416. Epub 2019 Dec 31.

The number of FDA-approved protein drugs (biologics), such as antibodies, antibody-drug conjugates, hormones, and enzymes, continues to grow at a rapid rate; most of these drugs are used to treat diseases of the peripheral body. Unfortunately, most of these biologics cannot be used to treat brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and brain tumors in a noninvasive manner due to their inability to permeate the blood-brain barrier (BBB). Therefore, there is a need to develop an effective method to deliver protein drugs into the brain. Here, we report a proof of concept to deliver a recombinant brain-derived neurotrophic factor (BDNF) to the brains of healthy and experimental autoimmune encephalomyelitis (EAE) mice via intravenous (iv) injections by co-administering BDNF with a BBB modulator (BBBM) peptide ADTC5. Western blot evaluations indicated that ADTC5 enhanced the brain delivery of BDNF in healthy SJL/elite mice compared to BDNF alone and triggered the phosphorylation of TrkB receptors in the brain. The EAE mice treated with BDNF + ADTC5 suppressed EAE relapse compared to those treated with BDNF alone, ADTC5 alone, or vehicle. We further demonstrated that brain delivery of BDNF induced neuroregeneration via visible activation of oligodendrocytes, remyelination, and ARC and EGR1 mRNA transcript upregulation. In summary, we have demonstrated that ADTC5 peptide modulates the BBB to permit noninvasive delivery of BDNF to exert its neuroregeneration activity in the brains of EAE mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00644DOI Listing
February 2020

Methotrexate disposition, anti-folate activity and efficacy in the collagen-induced arthritis mouse model.

Eur J Pharmacol 2019 Jun 2;853:264-274. Epub 2019 Apr 2.

Department of Pharmacy Practice, University of Kansas Medical Center, Kansas City, KS, USA. Electronic address:

Methotrexate (MTX) efficacy in autoimmune arthritis is variable and unpredictable resulting in the need for the identification of biomarkers to guide drug therapy. This study utilizes the collagen-induced arthritis mouse model to investigate erythrocyte MTX disposition and anti-folate activity as biochemical markers of efficacy in autoimmune arthritis. Following induction of arthritis, DBA/1J mice were treated with once-weekly subcutaneous MTX at varying doses over a period of 40 days. At the completion of the study tissue samples were analyzed for MTX and folate content and assessed for their relationship with MTX efficacy. MTX treatment resulted in a reduction in disease activity that was variable and dose-dependent. Erythrocyte accumulation of MTX and its polyglutamate metabolites were dose proportionate, however, polyglutamate metabolites represented a mean ± S.E.M. of 8.9 ± 0.4% of total erythrocyte MTX, which is markedly lower than previously observed in humans and failed to display any significant association with MTX efficacy. MTX treatment resulted in reductions in erythrocyte 5-methyl-tetrahydrofolate (5mTHF) levels that were similar to those previously observed in human studies. Disease induction was associated with a decrease in liver 5mTHF and increased formyl-tetrahydrofolate (fTHF) that was normalized in MTX treated mice. MTX efficacy was associated with reductions in erythrocyte 5mTHF (P = 0.04) and increases in liver 5mTHF (P = 0.0001). Together, these findings demonstrate a relationship between alterations in tissue folate levels and MTX efficacy, and supports erythrocyte levels of 5mTHF as a marker of MTX efficacy in autoimmune arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2019.03.052DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500488PMC
June 2019

Improving Brain Delivery of Biomolecules via BBB Modulation in Mouse and Rat: Detection using MRI, NIRF, and Mass Spectrometry.

Nanotheranostics 2017 8;1(2):217-231. Epub 2017 Jun 8.

Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.

There is an urgent need to develop new and alternative methods to deliver functional biomolecules to the brain for diagnosis and treatment of brain diseases. The goal of this study was to evaluate the activity of blood-brain barrier (BBB) modulators (, HAV and ADT peptides) to deliver functional biomolecules (, galbumin, IRdye800cw-cLABL, and cIBR7) to the brains of mice and rats. HAV6, cHAVc3, and ADTC5 peptides but not HAV4 peptide significantly enhanced the brain delivery of 65 kDa galbumin compared to control in Balb/c mice as quantified by magnetic resonance imaging (MRI). Ten-minute pretreatment with ADTC5 peptide still significantly increased brain delivery of galbumin; however, no enhancement was observed after 10-min pretreatment with HAV6. There was no enhancement of galbumin deposition following 40-min pretreatment with ADTC5 or HAV6, suggesting a short duration of the BBB opening for large molecules. ADTC5 peptide also improved the brain delivery of IRdye800cw-cLABL peptide about 3.5-fold compared to control in Balb/c mice as detected by near infrared fluorescence (NIRF). The BBB modulator activity of ADTC5 to deliver cIBR7 peptide was also evaluated using Sprague-Dawley rats. The amount of cIBR7 in the brain was detected by LC-MS/MS. ADTC5 peptide enhanced the delivery of cIBR7 peptide into rat brain about 4-fold compared to control and the intact cIBR7 can be efficiently extracted and detected in rat brain. In conclusion, HAV and ADT peptides enhance the brain delivery of functional peptides (, cLABL and cIBR7) and protein (, 65 kDa galbumin) in two animal models, and the duration of the BBB opening for a large molecule (, galbumin) was short.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7150/ntno.19158DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588751PMC
June 2017

Synthesis of a Bifunctional Peptide Inhibitor-IgG1 Fc Fusion That Suppresses Experimental Autoimmune Encephalomyelitis.

Bioconjug Chem 2017 07 22;28(7):1867-1877. Epub 2017 Jun 22.

The Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.

Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.7b00175DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659714PMC
July 2017

Comparison of Linear and Cyclic His-Ala-Val Peptides in Modulating the Blood-Brain Barrier Permeability: Impact on Delivery of Molecules to the Brain.

J Pharm Sci 2016 Feb;105(2):797-807

Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047. Electronic address:

The aim of this study is to evaluate the effect of peptide cyclization on the blood-brain barrier (BBB) modulatory activity and plasma stability of His-Ala-Val peptides, which are derived from the extracellular 1 domain of human E-cadherin. The activities to modulate the intercellular junctions by linear HAV4 (Ac-SHAVAS-NH2), cyclic cHAVc1 (Cyclo(1,8)Ac-CSHAVASC-NH2), and cyclic cHAVc3 (Cyclo(1,6)Ac-CSHAVC-NH2) were compared in in vitro and in vivo BBB models. Linear HAV4 and cyclic cHAVc1 have the same junction modulatory activities as assessed by in vitro MDCK monolayer model and in situ rat brain perfusion model. In contrast, cyclic cHAVc3 was more effective than linear HAV4 in modulating MDCK cell monolayers and in improving in vivo brain delivery of Gd-DTPA on i.v. administration in Balb/c mice. Cyclic cHAVc3 (t1/2 = 12.95 h) has better plasma stability compared with linear HAV4 (t1/2 = 2.4 h). The duration of the BBB modulation was longer using cHAVc3 (2-4 h) compared with HAV4 (<1 h). Both HAV4 and cHAVc3 peptides also enhanced the in vivo brain delivery of IRdye800cw-PEG (25 kDa) as detected by near IR imaging. The result showed that cyclic cHAVc3 peptide had better activity and plasma stability than linear HAV4 peptide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0022-3549(15)00188-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756412PMC
February 2016

Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging.

Mol Pharm 2016 Feb 6;13(2):379-90. Epub 2016 Jan 6.

Department of Pharmaceutical Chemistry, The University of Kansas , Lawrence, Kansas 66047, United States.

Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new noninvasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (iv) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00607DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935662PMC
February 2016

Bifunctional Peptide Inhibitors Suppress Interleukin-6 Proliferation and Ameliorates Murine Collagen-Induced Arthritis.

J Clin Cell Immunol 2014 Dec;5(6)

Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.

The objective of this study is to evaluate the efficacy and potential mechanism of action of type-II collagen bifunctional peptide inhibitor (CII-BPI) molecules in suppressing rheumatoid arthritis in the collagen-induced arthritis (CIA) mouse model. CII-BPI molecules (CII-BPI-1, CII-BPI-2, and CII-BPI-3) were formed through conjugation between an antigenic peptide derived from type-II collagen and a cell adhesion peptide LABL (CD11a) from the I-domain of LFA-1 via a linker molecule. The hypothesis is that the CII-BPI molecules simultaneously bind to MHC-II and ICAM-1 on the surface of APC and block maturation of the immunological synapse. As a result, the differentiation of naïve T cells is altered from inflammatory to regulatory and/or suppressor T cells. The efficacies of CII-BPI molecules were evaluated upon intravenous injections in CIA mice. Results showed that CII-BPI-1 and CIIBPI-2 suppressed the joint inflammations in CIA mice in a dose-dependent manner and were more potent than the respective antigenic peptides alone. CII-BPI-3 was not as efficacious as CII-BPI-1 and CII-BPI-2. Significantly less joint damage was observed in CII-BPI-2 and CII-2 treated mice than in the control. The production of IL-6 was significantly lower at the peak of disease in mice treated with CII-BPI-2 compared to those treated with CII-2 and control. In conclusion, this is the first proof-of-concept study showing that BPI molecules can be used to suppress RA and may be a potential therapeutic strategy for the treatment of rheumatoid arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4172/2155-9899.1000273DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524745PMC
December 2014

Immune Tolerance Induction against Experimental Autoimmune Encephalomyelitis (EAE) Using A New PLP-B7AP Conjugate that Simultaneously Targets B7/CD28 Costimulatory Signal and TCR/MHC-II Signal.

J Mult Scler (Foster City) 2015 Dec;2(1)

Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.

Most of the current therapies used in the treatment of multiple sclerosis (MS) are either ineffective or have adverse side effects. As such, there is a need to develop better therapies that specifically target myelin-specific aberrant immune cells involved in CNS inflammation without compromising the general immune system. In the present study, we developed a new bifunctional peptide inhibitor (BPI) that is effective and specific. Our BPI (PLP-B7AP) is composed of an antigenic peptide from myelin proteolipid protein (PLP) and a B7 antisense peptide (B7AP) derived from CD28 receptor. The main hypothesis is that PLP-B7AP simultaneously targets MHC-II and B7-costimulatory molecules on the surface of antigen presenting cells (APC) and possibly alters the differentiation of naïve T cells from inflammatory to regulatory phenotypes. Results showed that PLP-B7AP was very effective in suppressing experimental autoimmune encephalomyelitis (EAE) compared to various controls in a mouse model. PLP-B7AP was effective when administered both before and after disease induction. Secreted cytokines from splenocytes isolated during periods of high disease severity and remission indicated that PLP-B7AP treatment induced an increased production of anti-inflammatory cytokines and inhibited the production of pro-inflammatory cytokines. Further, analysis of cortical brain tissue sections showed that PLP-B7AP treated mice had significantly lower demyelination compared to the control group. All these taken together indicate that the T cell receptor (TCR) and the CD28 receptor can be targeted simultaneously to improve efficacy and specificity of potential MS therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4172/2376-0389.1000131DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484621PMC
December 2015

Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability.

J Pharm Sci 2015 Mar 12;104(3):1065-75. Epub 2015 Jan 12.

Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, 66047.

It is challenging to deliver molecules to the brain for diagnosis and treatment of brain diseases. This is primarily because of the presence of the blood-brain barrier (BBB), which restricts the entry of many molecules into the brain. In this study, cyclic-ADT peptides (ADTC1, ADTC5, and ADTC6) have been shown to modify the BBB to enhance the delivery of marker molecules [e.g., (14) C-mannitol, gadolinium-diethylenetriaminepentacetate (Gd-DTPA)] to the brain via the paracellular pathways of the BBB. The hypothesis is that these peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells forming the BBB to increase paracellular drug permeation. In vitro studies indicated that ADTC5 had the best profile to inhibit adherens junction resealing in Madin-Darby canine kidney cell monolayers in a concentration-dependent manner (IC50 = 0.3 mM) with a maximal response at 0.4 mM. Under the current experimental conditions, ADTC5 improved the delivery of (14) C-mannitol to the brain about twofold compared with the negative control in the in situ rat brain perfusion model. Furthermore, ADTC5 peptide increased in vivo delivery of Gd-DTPA to the brain of Balb/c mice when administered intravenously. In conclusion, ADTC5 has the potential to improve delivery of diagnostic and therapeutic agents to the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.24309DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442687PMC
March 2015

Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers.

Ther Deliv 2014 Oct;5(10):1143-63

Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA.

One of the major hurdles in developing therapeutic agents is the difficulty in delivering drugs through the intestinal mucosa and blood-brain barriers (BBB). The goal here is to describe the general structures of the biological barriers and the strategies to enhance drug delivery across these barriers. Prodrug methods used to improve drug penetration via the transcellular pathway have been successfully developed, and some prodrugs have been used to treat patients. The use of transporters to improve absorption of some drugs (e.g., antiviral agents) has also been successful in treating patients. Other methods, including blocking the efflux pumps to improve transcellular delivery, and modulation of cell-cell adhesion in the intercellular junctions to improve paracellular delivery across biological barriers, are still in the investigational stage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/tde.14.67DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445828PMC
October 2014

Modulation of blood-brain barrier permeability in mice using synthetic E-cadherin peptide.

Mol Pharm 2014 Mar 19;11(3):974-81. Epub 2014 Feb 19.

Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, Manitoba, Canada.

The present work characterizes the effects of synthetic E-cadherin peptide (HAV) on blood-brain barrier (BBB) integrity using various techniques including magnetic resonance imaging (MRI) and near-infrared fluorescent imaging (NIRF). The permeability of small molecular weight permeability marker gadolinium diethylenetriaminepentaacetate (Gd-DTPA) contrast agent, the large molecular weight permeability marker, IRDye 800CW PEG, and the P-glycoprotein (P-gp) efflux transporter contrast agent, rhodamine 800 (R800), were examined in the presence and absence of HAV peptide. The results consistently demonstrated that systemic iv administration of HAV peptide resulted in a reversible disruption of BBB integrity and enhanced the accumulation of all the dyes examined. The magnitude of increase ranged from 2-fold to 5-fold depending on the size and the properties of the permeability markers. The time frame for BBB disruption with HAV peptide was rapid, occurring within 3-6 min following injection of the peptide. Furthermore, modulation of BBB permeability was reversible with the barrier integrity being restored within 60 min of the injection. The increased BBB permeability observed following HAV peptide administration was not attributable to changes in cerebral blood flow. These studies support the potential use of cadherin peptides to rapidly and reversibly modulate BBB permeability of a variety of therapeutic agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp400624vDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993937PMC
March 2014

Vaccinelike and prophylactic treatments of EAE with novel I-domain antigen conjugates (IDAC): targeting multiple antigenic peptides to APC.

Mol Pharm 2013 Jan 29;10(1):297-306. Epub 2012 Nov 29.

Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, Kansas 66047, United States.

The objective of this work is to utilize novel I-domain antigenic-peptide conjugates (IDAC) for targeting antigenic peptides to antigen-presenting cells (APC) to simulate tolerance in experimental autoimmune encephalomyelitis (EAE). IDAC-1 and IDAC-3 molecules are conjugates between the I-domain protein and PLP-Cys and Ac-PLP-Cys-NH(2) peptides, respectively, tethered to N-terminus and Lys residues on the I-domain. The hypothesis is that the I-domain protein binds to ICAM-1 and PLP peptide binds to MHC-II on the surface of APC; this binding event inhibits the formation of the immunological synapse at the APC-T-cell interface to alter T-cell differentiation from inflammatory to regulatory phenotypes. Conjugation of peptides to the I-domain did not change the secondary structure of IDAC molecules as determined by circular dichroism spectroscopy. The efficacies of IDAC-1 and -3 were evaluated in EAE mice by administering iv or sc injections of IDAC in a prophylactic or a vaccinelike dosing schedule. IDAC-3 was better than IDAC-1 in suppressing and delaying the onset of EAE when delivered in prophylactic and vaccinelike manners. IDAC-3 also suppressed subsequent relapse of the disease. The production of IL-17 was lowered in the IDAC-3-treated mice compared to those treated with PBS. In contrast, the production of IL-10 was increased, suggesting that there is a shift from inflammatory to regulatory T-cell populations in IDAC-3-treated mice. In conclusion, the I-domain can effectively deliver antigenic peptides in a vaccinelike or prophylactic manner for inducing immunotolerance in the EAE mouse model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp300440xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540176PMC
January 2013

Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis.

Mol Pharm 2012 Apr 13;9(4):979-85. Epub 2012 Mar 13.

Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas , Lawrence, Kansas, USA.

The objective of this work is to use colloidal gel from alginate-chitosan-PLGA complex to deliver Ac-PLP-BPI-NH₂-2 peptide in a controlled-release manner as a vaccine-like therapeutic to suppress experimental autoimmune encephalomyelitis (EAE) in the mouse model. Oppositely charged PLGA nanoparticles were prepared by a solvent diffusion method. The carboxyl group of the alginate and the amine group of the chitosan coated the nanoparticles with negative and positive charges, respectively. The peptide (Ac-PLP-BPI-NH₂-2), designed to bind to MHC-II and ICAM-1 simultaneously, was formulated into the colloidal gel by physical mixture. Vaccine-like administration of the peptide-loaded colloidal gel (Ac-PLP-BPI-NH₂-2-NP) was achieved by subcutaneous (sc) injection to EAE mice. Disease severity was measured using clinical scoring and percent change in body weight. Cytokine production was determined using the splenocytes from Ac-PLP-BPI-NH₂-2-NP-treated mice and compared to that of controls. Ac-PLP-BPI-NH₂-2-NP suppressed and delayed the onset of EAE as well as Ac-PLP-BPI-NH₂-2 when delivered in a vaccine-like manner. IL-6 and IL-17 levels were significantly lower in the Ac-PLP-BPI-NH₂-2-NP-treated mice compared to the mouse group treated with blank colloidal gel, suggesting that the mechanism of suppression of EAE is due to a shift in the immune response away from Th17 production. The results of this study suggest that a one-time sc administration of Ac-PLP-BPI-NH₂-2 formulated in a colloidal gel can produce long-term suppression of EAE by reducing Th17 proliferation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp200614qDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357633PMC
April 2012

I-domain-antigen conjugate (IDAC) for delivering antigenic peptides to APC: synthesis, characterization, and in vivo EAE suppression.

Bioconjug Chem 2012 Mar 12;23(3):509-17. Epub 2012 Mar 12.

Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA.

The objectives of this work are to characterize the identity of I-domain-antigen conjugate (IDAC) and to evaluate the in vivo efficacy of IDAC in suppressing experimental autoimmune encephalomyelitis (EAE) in mouse model. The hypothesis is that the I-domain delivers PLP(139-151) peptides to antigen-presenting cells (APC) and alters the immune system by simultaneously binding to ICAM-1 and MHC-II, blocking immunological synapse formation. IDAC was synthesized by derivatizing the lysine residues with maleimide groups followed by conjugation with PLP-Cys-OH peptide. Conjugation with PLP peptide does not alter the secondary structure of the protein as determined by CD. IDAC suppresses the progression of EAE, while I-domain and GMB-I-domain could only delay the onset of EAE. As a positive control, Ac-PLP-BPI-NH(2)-2 can effectively suppress the progress of EAE. The number of conjugation sites and the sites of conjugations in IDAC were determined using tryptic digest followed by LC-MS analysis. In conclusion, conjugation of I-domain with an antigenic peptide (PLP) resulted in an active molecule to suppress EAE in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc200580jDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311109PMC
March 2012

Suppression of EAE and prevention of blood-brain barrier breakdown after vaccination with novel bifunctional peptide inhibitor.

Neuropharmacology 2012 Mar 17;62(4):1874-81. Epub 2011 Dec 17.

Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA.

The efficacy of bifunctional peptide inhibitor (BPI) in preventing blood-brain barrier (BBB) breakdown during onset of experimental autoimmune encephalomyelitis (EAE) and suppression of the disease was evaluated in mice. The mechanism that defines how BPI prevents the disease was investigated by measuring the in vitro cytokine production of splenocytes. Peptides were injected 5-11 days prior to induction of EAE, and the severity of the disease was monitored by a standard clinical scoring protocol and change in body weight. The BBB breakdown in diseased and treated mice was compared to that in normal control mice by determining deposition of gadolinium diethylenetriaminepentaacetate (Gd-DTPA) in the brain using magnetic resonance imaging (MRI). Mice treated with PLP-BPI showed no or low indication of EAE as well as normal increase in body weight. In contrast, mice treated with the control peptide or PBS showed a decrease in body weight and a high disease score. The diseased mice had high deposition of Gd-DTPA in the brain, indicating breakdown in the BBB. However, the deposition of Gd-DTPA in PLP-BPI-treated mice was similar to that in normal control mice. Thus, PLP-BPI can suppress EAE when administered as a peptide vaccine and maintain the integrity of the BBB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2011.12.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269550PMC
March 2012

Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases.

Med Res Rev 2012 Jul 23;32(4):727-64. Epub 2011 Mar 23.

Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KA 66047, USA.

In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a "bull's eye"-like formation of the immunological synapse (IS) at the T-cell-APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from T(H)1 to T(reg) and/or T(H)2 phenotypes, leading to tolerance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/med.20243DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441537PMC
July 2012

Enhancement of drug absorption through the blood-brain barrier and inhibition of intercellular tight junction resealing by E-cadherin peptides.

Mol Pharm 2011 Feb 17;8(1):239-49. Epub 2010 Dec 17.

Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA.

E-cadherin-mediated cell-cell interactions in the zonula adherens play an important role in the formation of the intercellular tight junctions found in the blood-brain barrier. However, it is also responsible for the low permeation of drugs into the brain. In this study, HAV6 peptide derived from the EC1 domain of E-cadherin was found to enhance the permeation of ¹⁴C-mannitol and [³H(G)]-daunomycin through the blood-brain barrier of the in situ rat brain perfusion model. In addition, HAV6 peptide and verapamil have a synergistic effect in enhancing the BBB permeation of daunomycin. A new intercellular-junction resealing assay was also developed using Caco-2 monolayers to evaluate new peptides (BLG2, BLG3, and BLG4) derived from the bulge regions of the EC2, EC3, and EC4 domains of E-cadherin. BLG2 and BLG4 peptides but not BLG3 peptides were found to be effective in blocking the resealing of the intercellular junctions. The positive control peptides (ADT10, ADT6, and HAV10) block the resealing of the intercellular junctions in a concentration-dependent manner. All these findings suggest that E-cadherin-derived peptides can block E-cadherin-mediated cell-cell interactions. These findings demonstrate that cadherin peptides may offer a useful targeted permeation enhancement of therapeutic agents such as anticancer drugs into the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp100293mDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078649PMC
February 2011

Antigen-specific suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor: structure optimization and pharmacokinetics.

J Pharmacol Exp Ther 2010 Mar 21;332(3):1136-45. Epub 2009 Dec 21.

Department of Pharmaceutical Chemistry, University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, KS 66047, USA.

The objective of this study was to optimize the in vivo activity of proteolipid protein (PLP)-bifunctional peptide inhibitor (BPI) molecule to suppress experimental autoimmune encephalomyelitis (EAE) in SJL/J mice and evaluate pharmacokinetic profiles of PLP-BPI. PLP-BPI is constructed via conjugation of myelin PLP(139-151) with CD11a(237-246)-derived peptide (LABL) via a spacer. The hypothesis is that PLP-BPI binds simultaneously to major histocompatibility complex-II and intercellular adhesion molecule-1 on the antigen-presenting cell (APC) and inhibits the formation of the immunological synapse during T-cell and APC interactions. In this study, the structure of BPI was modified by varying the spacer and was evaluated in the EAE model. Intravenous injections of BPI derivatives inhibited the onset, severity, and incidence of EAE more effectively and induced a lower incidence of anaphylaxis than that produced by unmodified PLP-BPI. As anticipated, production of interleukin-17, a proinflammatory cytokine commonly found in elevated levels among multiple sclerosis (MS) patients, was significantly lower in Ac-PLP-BPI-PEG6- or Ac-PLP-BPI-NH(2)-2-treated mice than in phosphate-buffered saline-treated mice. These results suggest that BPI-type molecules can be modified to achieve more efficient and better tolerated BPI-based derivatives for the treatment of MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.109.161109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835440PMC
March 2010

Immune response to controlled release of immunomodulating peptides in a murine experimental autoimmune encephalomyelitis (EAE) model.

J Control Release 2010 Jan 12;141(2):145-52. Epub 2009 Sep 12.

Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.

The effects of controlled release on immune response to an immunomodulating peptide were evaluated in a murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). The peptide, Ac-PLP-BPI-NH(2)-2 (Ac-HSLGKWLGHPDKF-(AcpGAcpGAcp)(2)-ITDGEATDSG-NH(2); Ac = acetyl, Acp = epsilon aminocaproic acid) was designed to suppress T-cell activation in response to PLP(139-151), an antigenic peptide in MS. Poly-lactide-co-glycolide (PLGA) microparticles containing Ac-PLP-BPI-NH(2)-2 (8+/-4 microm, 1.4+/-0.2% (w/w)) were prepared by a powder-in oil-in water emulsion-solvent evaporation method, sterilized and administered subcutaneously (s.c.) to SJL/J (H-2(s)) mice in which EAE had been induced by immunization with PLP(139-151). Treatment groups received Ac-PLP-BPI-NH(2)-2: (i) in solution by repeated i.v. or s.c. injection, (ii) in solution co-administered with blank PLGA microparticles, (iii) in solution co-administered with Ac-PLP-BPI-NH(2)-2 loaded microparticles, and (iv) as Ac-PLP-BPI-NH(2)-2 loaded microparticles. Administration of Ac-PLP-BPI-NH(2)-2 as an s.c. solution produced clinical scores and maintenance of body weight comparable to i.v. solution, but with reduced overall survival, presumably due to anaphylaxis. Administration as s.c. microparticles provided a somewhat less effective reduction in symptoms but with no toxicity during treatment. Thus, the results suggest that s.c. administration of Ac-PLP-BPI-NH(2)-2 microparticles can provide pharmacological efficacy and reduction in dosing frequency without increased toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2009.09.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903655PMC
January 2010

Prophylactic and therapeutic suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor.

Clin Immunol 2008 Oct 3;129(1):69-79. Epub 2008 Aug 3.

Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66049-3729, USA.

The objective was to optimize and evaluate the in vivo activities of our novel bifunctional peptide inhibitor (BPI), which alters immune response in autoimmune diseases by modulating the immunological synapse formation. Previously, we have designed PLP-BPI and GAD-BPI by conjugating myelin proteolipid protein (PLP)(139-151) and glutamic acid decarboxylase (GAD)(208-217), respectively, with CD11a(237-246) via a spacer peptide. PLP-BPI and GAD-BPI suppressed the disease progression in experimental autoimmune encephalomyelitis (EAE) and in type-1 diabetes, respectively. In this study, various PLP-BPI derivatives were synthesized and evaluated in the EAE model. Intravenous injections of PLP-BPI derivatives prevented the disease progression more efficiently than did unmodified PLP-BPI. Production of IL-17, a potent proinflammatory cytokine found commonly among MS patients, was significantly low in Ac-PLP-BPI-NH(2)-2-treated mice. Treatment given after the disease onset could dramatically ameliorate the disease. BPI induced anaphylactic responses at a lower incidence than PLP(139-151). In conclusion, PLP-BPI derivatives can effectively suppress the disease severity and morbidity of EAE by post-onset therapeutic treatment as well as prophylactic use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2008.06.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597351PMC
October 2008

Transdermal delivery of bupropion and its active metabolite, hydroxybupropion: a prodrug strategy as an alternative approach.

J Pharm Sci 2009 Feb;98(2):583-94

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA.

This investigation includes an evaluation of the percutaneous absorption of bupropion (BUP) and hydroxybupropion (BUPOH) in vitro and in vivo. In addition, a carbamate prodrug of BUPOH (But-BUPOH) was evaluated in vitro. In vitro diffusion studies were conducted in a flow-through diffusion cell system. The in vitro mean steady-state flux of BUP was significantly higher (p < 0.001) compared to BUPOH (320 +/- 16 nmol cm(-2) h(-1) vs. 27 +/- 4 nmol cm(-2) h(-1)). Additionally, a good correlation existed between in vitro and in vivo results. Mean steady-state plasma concentrations of 442 +/- 32 ng/mL and125 +/- 18 ng/mL were maintained over 48 h after topical application of BUP and BUPOH in hairless guinea pigs in vivo, respectively. Although BUP traversed human skin at rates sufficient to achieve required plasma levels, it is chemically unstable and hygroscopic, and unsuitable for transdermal formulation. On the other hand, BUPOH is stable but its transport across skin is much slower. Alternatively, the prodrug But-BUPOH was found to be stable, and also provided a 2.7-fold increase in the transdermal flux of BUPOH across human skin in vitro. Thus, But-BUPOH provides a viable option for the transdermal delivery of BUPOH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.21463DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612091PMC
February 2009

In vivo evaluation of a transdermal codrug of 6-beta-naltrexol linked to hydroxybupropion in hairless guinea pigs.

Eur J Pharm Sci 2008 Apr 31;33(4-5):371-9. Epub 2008 Jan 31.

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536-0082, USA.

6-Beta-naltrexol is the major active metabolite of naltrexone, NTX, a potent mu-opioid receptor antagonist used in the treatment of alcohol dependence and opioid abuse. Compared to naloxone, NTX has a longer duration of action largely attributed to 6-beta-naltrexol. This study was carried out in order to determine percutaneous absorption of a transdermal codrug of naltrexol, 6-beta-naltrexol-hydroxybupropion codrug (CB-NTXOL-BUPOH), in hairless guinea pigs as well as to evaluate the safety of 6-beta-naltrexol for development as a transdermal dosage form. This codrug may be useful in the simultaneous treatment of alcohol dependence and tobacco addiction. The carbonate codrug traversed the skin at a faster rate than 6-beta-naltrexol. 6-Beta-naltrexol equivalent steady state plasma concentrations of 6.4 ng/ml were obtained after application of the codrug as compared to 1.2 ng/ml from 6-beta-naltrexol base. The steady state plasma concentration of hydroxybupropion after codrug application was 6.9 ng/ml. Skin sensitization and irritation tested in the hairless guinea pigs using the Buehler method revealed that 6-beta-naltrexol had no skin sensitizing potential. The method was validated with a known sensitizer, p-phenylenediamine, which induced sensitization in 90% of the animals. 6-beta-Naltrexol caused only mild transient skin irritation after the initial application of the patch. During subsequent applications, erythema was slightly increased but no skin damage was observed. In conclusion, a transdermal codrug of 6-beta-naltrexol could be a viable alternative treatment for alcohol and opiate abuse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2008.01.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390923PMC
April 2008

Synthesis and hydrolytic behavior of two novel tripartate codrugs of naltrexone and 6beta-naltrexol with hydroxybupropion as potential alcohol abuse and smoking cessation agents.

Bioorg Med Chem 2006 Oct 23;14(20):7051-61. Epub 2006 Jun 23.

College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA.

A codrug approach for simultaneous treatment of alcohol abuse and tobacco dependence is considered as very desirable because of substantial evidence that smoking is increased significantly during drinking, and that smoking is regarded as a behavioral 'cue' for the urge to consume alcohol. The purpose of this study was to design and synthesize codrugs for simultaneous treatment of alcohol abuse and tobacco dependence. Two novel tripartate codrugs of naltrexone (NTX) and naltrexol (NTXOL) covalently linked to hydroxybupropion (BUPOH) were synthesized (25 and 26, respectively), and their hydrolytic cleavage to the parent drugs was determined. These codrugs were generally less crystalline when compared to NTX, or NTXOL, as indicated by their lower melting points, and were expected to be more lipid-soluble. Also, the calculated clogP values were found to be higher for the codrugs compared to those for NTX and NTXOL. The studies on the hydrolysis of the codrugs provided good evidence that they could be efficiently converted to the parent drugs in buffer at physiological pH. Thus, these codrugs are likely to be cleaved enzymatically in vivo to generate the parent drugs, and are considered to be potential candidates for simultaneous treatment of alcohol abuse and tobacco dependence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2006.06.018DOI Listing
October 2006

Enhancement of transdermal delivery of 6-beta-naltrexol via a codrug linked to hydroxybupropion.

J Control Release 2006 Jun 25;113(2):137-45. Epub 2006 Apr 25.

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.

Naltrexone (NTX) is a potent opioid antagonist used in the treatment of alcohol dependence and heroin abuse. Compared with naloxone, NTX has a longer duration of action largely attributed to its major active metabolite, 6-beta-naltrexol. The purpose of this study was to increase the delivery of 6-beta-naltrexol across human skin in vitro via a novel codrug. A carbonate codrug of 6-beta-naltrexol linked to hydroxybupropion was synthesized and evaluated. In vitro human skin permeation rates were measured using a flow-through diffusion cell system. The drug melting points, solubilities, chemical stability, and skin disposition were determined. The carbonate codrug was hydrolyzed on passing through skin and appeared as a combination of intact codrug and parent drugs, 6-beta-naltrexol and hydroxybupropion, in the receiver solution. The codrug provided a significantly (p<0.05) higher 6-beta-naltrexol flux across human skin than 6-beta-naltrexol base. The extent of parent drug regeneration in the skin ranged from 56 to 86%. A higher stratum corneum partition coefficient and rapid bioconversion of the carbonate codrug in the skin correlated with increased 6-beta-naltrexol delivery rates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2006.04.003DOI Listing
June 2006

Transdermal delivery of naltrexone and its active metabolite 6-beta-naltrexol in human skin in vitro and guinea pigs in vivo.

J Pharm Sci 2005 Sep;94(9):1965-75

Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0082, USA.

The aim of the present study was to evaluate the transdermal delivery of 6-beta-naltrexol (NTXOL), the active metabolite of naltrexone (NTX), across human skin and guinea pig skin in vitro and in hairless guinea pigs in vivo. NTXOL may be responsible for much of NTX's pharmacologic activity. In vitro diffusion studies on NTXOL were compared with similar studies on NTX using a formulation of propylene glycol and buffer in a flow-through diffusion cell system. In vivo guinea pig studies were carried out involving topical application of both drugs in patches containing identical formulations. The in vitro flux of NTX was about 2.3- and 5.6-fold higher than for NTXOL across guinea pig skin and human skin, respectively. NTXOL lag times were longer than NTX in both skin types. In vivo studies in guinea pigs showed that the steady-state plasma level of NTX was twofold greater than NTXOL, which correlated well with in vitro data. The results of the present study indicated that substantial levels of NTX and NTXOL could be delivered via the transdermal route, although the plasma levels of NTXOL were significantly less than NTX. Further transdermal formulation development will be investigated for permeation enhancement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.20398DOI Listing
September 2005

Transdermal permeation of WIN 55,212-2 and CP 55,940 in human skin in vitro.

Int J Pharm 2004 Jun;278(1):173-80

Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.

Synthetic cannabinoids have a promising future as treatments for nausea, appetite modulation, pain, and many neurological disorders. Transdermal delivery is a convenient and desirable dosage form for these drugs and health conditions. The aim of the present study was to investigate the in vitro transdermal permeation of two synthetic cannabinoids, WIN 55,212-2 and CP 55,940. Transdermal flux, drug content in the skin, and lag times were measured in split-thickness human abdominal skin in flow-through diffusion cells with receiver solutions of 4% bovine serum albumin (BSA) or 0.5% Brij 98. Differential thermal analysis (DSC) was performed in order to determine heats of fusion, melting points, and relative thermodynamic activities. The in vitro diffusion studies in 0.5% Brij 98 indicated that WIN 55,212-2 diffuses across human skin faster than CP 55,940. The WIN 55,212-2 skin disposition concentration levels were also significantly higher than that of CP 55,940. Correspondingly, CP 55,940 was significantly metabolized in the skin. WIN 55,212-2 flux and skin disposition were significantly lower into 4% BSA than into 0.5% Brij 98 receiver solutions. There was no significant difference in the flux, lag time, and drug content in the skin of CP 55,940 in 4% BSA versus 0.5% Brij 98 receiver solutions. The DSC studies showed that CP 55,940 had a significantly lower melting point, smaller heat of fusion, and corresponding higher calculated thermodynamic activity than the more crystalline WIN 55,212-2 mesylate salt. The permeation results indicated that WIN 55,212-2 mesylate, CP 55,940, and other potent synthetic cannabinoids with these physicochemical properties could be ideal candidates for the development of a transdermal therapeutic system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2004.03.009DOI Listing
June 2004
-->