Publications by authors named "Paul D Bieniasz"

154 Publications

Naturally enhanced neutralizing breadth to SARS-CoV-2 after one year.

bioRxiv 2021 Jun 2. Epub 2021 Jun 2.

Over one year after its inception, the coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains difficult to control despite the availability of several excellent vaccines. Progress in controlling the pandemic is slowed by the emergence of variants that appear to be more transmissible and more resistant to antibodies . Here we report on a cohort of 63 COVID-19-convalescent individuals assessed at 1.3, 6.2 and 12 months after infection, 41% of whom also received mRNA vaccines . In the absence of vaccination antibody reactivity to the receptor binding domain (RBD) of SARS-CoV-2, neutralizing activity and the number of RBD-specific memory B cells remain relatively stable from 6 to 12 months. Vaccination increases all components of the humoral response, and as expected, results in serum neutralizing activities against variants of concern that are comparable to or greater than neutralizing activity against the original Wuhan Hu-1 achieved by vaccination of naïve individuals . The mechanism underlying these broad-based responses involves ongoing antibody somatic mutation, memory B cell clonal turnover, and development of monoclonal antibodies that are exceptionally resistant to SARS-CoV-2 RBD mutations, including those found in variants of concern . In addition, B cell clones expressing broad and potent antibodies are selectively retained in the repertoire over time and expand dramatically after vaccination. The data suggest that immunity in convalescent individuals will be very long lasting and that convalescent individuals who receive available mRNA vaccines will produce antibodies and memory B cells that should be protective against circulating SARS-CoV-2 variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.05.07.443175DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183008PMC
June 2021

Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants.

Nature 2021 Jun 7. Epub 2021 Jun 7.

Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, 20892, USA.

Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. While many vaccines have been deployed to date, the continual evolution of the viral receptor-binding domain (RBD) has challenged their efficacy. In particular, emerging variants B.1.1.7 (U.K.), B.1.351 (South Africa) and P.1 (Brazil) have compromised convalescent sera and immunotherapies that received emergency use authorization. One potential alternative to avert viral escape is the use of camelid VHHs or nanobodies, which can recognize epitopes often inaccessible to conventional antibodies. Here, we isolate anti-RBD nanobodies from llamas and "nanomice" we engineered to produce VHHs cloned from alpacas, dromedaries and camels. We identified two sets of highly neutralizing nanobodies. Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies. Group 2 is almost exclusively focused to the RBD-ACE2 interface and fails to neutralize variants carrying E484K or N501Y substitutions. Notably however, group 2 nanobodies retain full neutralization activity against variants when expressed as homotrimers, rivaling the most potent antibodies produced to date against SARS-CoV-2. These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2 binding domain, and recognition of conserved epitopes largely inaccessible to human antibodies. Therefore, while new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03676-zDOI Listing
June 2021

B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV.

Cell 2021 Jun 24;184(12):3205-3221.e24. Epub 2021 Apr 24.

Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.04.032DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064835PMC
June 2021

Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies.

bioRxiv 2021 Apr 26. Epub 2021 Apr 26.

Many anti-SARS-CoV-2 neutralizing antibodies target the ACE2-binding site on viral spike receptor-binding domains (RBDs). The most potent antibodies recognize exposed variable epitopes, often rendering them ineffective against other sarbecoviruses and SARS-CoV-2 variants. Class 4 anti-RBD antibodies against a less-exposed, but more-conserved, cryptic epitope could recognize newly-emergent zoonotic sarbecoviruses and variants, but usually show only weak neutralization potencies. We characterized two class 4 anti-RBD antibodies derived from COVID-19 donors that exhibited broad recognition and potent neutralization of zoonotic coronavirus and SARS-CoV-2 variants. C118-RBD and C022-RBD structures revealed CDRH3 mainchain H-bond interactions that extended an RBD β-sheet, thus reducing sensitivity to RBD sidechain changes, and epitopes that extended from the cryptic epitope to occlude ACE2 binding. A C118-spike trimer structure revealed rotated RBDs to allow cryptic epitope access and the potential for intra-spike crosslinking to increase avidity. These studies facilitate vaccine design and illustrate potential advantages of class 4 RBD-binding antibody therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.04.23.441195DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095199PMC
April 2021

Origin and evolution of the zinc finger antiviral protein.

PLoS Pathog 2021 Apr 26;17(4):e1009545. Epub 2021 Apr 26.

Laboratory of Retrovirology, The Rockefeller University, New York City, New York, United States of America.

The human zinc finger antiviral protein (ZAP) recognizes RNA by binding to CpG dinucleotides. Mammalian transcriptomes are CpG-poor, and ZAP may have evolved to exploit this feature to specifically target non-self viral RNA. Phylogenetic analyses reveal that ZAP and its paralogue PARP12 share an ancestral gene that arose prior to extensive eukaryote divergence, and the ZAP lineage diverged from the PARP12 lineage in tetrapods. Notably, the CpG content of modern eukaryote genomes varies widely, and ZAP-like genes arose subsequent to the emergence of CpG-suppression in vertebrates. Human PARP12 exhibited no antiviral activity against wild type and CpG-enriched HIV-1, but ZAP proteins from several tetrapods had antiviral activity when expressed in human cells. In some cases, ZAP antiviral activity required a TRIM25 protein from the same or related species, suggesting functional co-evolution of these genes. Indeed, a hypervariable sequence in the N-terminal domain of ZAP contributed to species-specific TRIM25 dependence in antiviral activity assays. Crosslinking immunoprecipitation coupled with RNA sequencing revealed that ZAP proteins from human, mouse, bat and alligator exhibit a high degree of CpG-specificity, while some avian ZAP proteins appear more promiscuous. Together, these data suggest that the CpG- rich RNA directed antiviral activity of ZAP-related proteins arose in tetrapods, subsequent to the onset of CpG suppression in certain eukaryote lineages, with subsequent species-specific adaptation of cofactor requirements and RNA target specificity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1009545DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102003PMC
April 2021

Vaccine Breakthrough Infections with SARS-CoV-2 Variants.

N Engl J Med 2021 06 21;384(23):2212-2218. Epub 2021 Apr 21.

From the Laboratory of Molecular Neuro-oncology (E.H., C.H., Y.S., N.E.B., M.B., E.G.C., R.B.D.), the Laboratory of Molecular Immunology (D.J.S.-B., C.G., M.C.N.), the Laboratory of Human Genetics and Genomics (R.L.), the Laboratory of Retrovirology (J.D., F.M., T.H., P.D.B.), and the Howard Hughes Medical Institute (M.C.N., P.D.B., R.B.D.), Rockefeller University, New York.

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of clinical concern. In a cohort of 417 persons who had received the second dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine at least 2 weeks previously, we identified 2 women with vaccine breakthrough infection. Despite evidence of vaccine efficacy in both women, symptoms of coronavirus disease 2019 developed, and they tested positive for SARS-CoV-2 by polymerase-chain-reaction testing. Viral sequencing revealed variants of likely clinical importance, including E484K in 1 woman and three mutations (T95I, del142-144, and D614G) in both. These observations indicate a potential risk of illness after successful vaccination and subsequent infection with variant virus, and they provide support for continued efforts to prevent and diagnose infection and to characterize variants in vaccinated persons. (Funded by the National Institutes of Health and others.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa2105000DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117968PMC
June 2021

Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2.

bioRxiv 2021 Apr 10. Epub 2021 Apr 10.

Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.04.08.438911DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043454PMC
April 2021

Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice.

Nature 2021 05 25;593(7859):424-428. Epub 2021 Mar 25.

European Commission, Joint Research Centre, Ispra, Italy.

Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-19. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-19. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03461-yDOI Listing
May 2021

Development of potency, breadth and resilience to viral escape mutations in SARS-CoV-2 neutralizing antibodies.

bioRxiv 2021 Mar 8. Epub 2021 Mar 8.

Antibodies elicited in response to infection undergo somatic mutation in germinal centers that can result in higher affinity for the cognate antigen. To determine the effects of somatic mutation on the properties of SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibodies, we analyzed six independent antibody lineages. As well as increased neutralization potency, antibody evolution changed pathways for acquisition of resistance and, in some cases, restricted the range of neutralization escape options. For some antibodies, maturation apparently imposed a requirement for multiple spike mutations to enable escape. For certain antibody lineages, maturation enabled neutralization of circulating SARS-CoV-2 variants of concern and heterologous sarbecoviruses. Antibody-antigen structures revealed that these properties resulted from substitutions that allowed additional variability at the interface with the RBD. These findings suggest that increasing antibody diversity through prolonged or repeated antigen exposure may improve protection against diversifying SARS-CoV-2 populations, and perhaps against other pandemic threat coronaviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.03.07.434227DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987023PMC
March 2021

Mutational escape from the polyclonal antibody response to SARS-CoV-2 infection is largely shaped by a single class of antibodies.

bioRxiv 2021 Mar 18. Epub 2021 Mar 18.

Monoclonal antibodies targeting a variety of epitopes have been isolated from individuals previously infected with SARS-CoV-2, but the relative contributions of these different antibody classes to the polyclonal response remains unclear. Here we use a yeast-display system to map all mutations to the viral spike receptor-binding domain (RBD) that escape binding by representatives of three potently neutralizing classes of anti-RBD antibodies with high-resolution structures. We compare the antibody-escape maps to similar maps for convalescent polyclonal plasma, including plasma from individuals from whom some of the antibodies were isolated. The plasma-escape maps most closely resemble those of a single class of antibodies that target an epitope on the RBD that includes site E484. Therefore, although the human immune system can produce antibodies that target diverse RBD epitopes, in practice the polyclonal response to infection is dominated by a single class of antibodies targeting an epitope that is already undergoing rapid evolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.03.17.435863DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987015PMC
March 2021

Multimeric nanobodies from camelid engineered mice and llamas potently neutralize SARS-CoV-2 variants.

bioRxiv 2021 Mar 4. Epub 2021 Mar 4.

Since the start of the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 2 million deaths worldwide. Multiple vaccines have been deployed to date, but the continual evolution of the viral receptor-binding domain (RBD) has recently challenged their efficacy. In particular, SARS-CoV-2 variants originating in the U.K. (B.1.1.7), South Africa (B.1.351) and New York (B.1.526) have reduced neutralization activity from convalescent sera and compromised the efficacy of antibody cocktails that received emergency use authorization. Whereas vaccines can be updated periodically to account for emerging variants, complementary strategies are urgently needed to avert viral escape. One potential alternative is the use of camelid VHHs (also known as nanobodies), which due to their small size can recognize protein crevices that are inaccessible to conventional antibodies. Here, we isolate anti-RBD nanobodies from llamas and "nanomice" we engineered to produce VHHs cloned from alpacas, dromedaries and camels. Through binding assays and cryo-electron microscopy, we identified two sets of highly neutralizing nanobodies. The first group expresses VHHs that circumvent RBD antigenic drift by recognizing a region outside the ACE2-binding site that is conserved in coronaviruses but is not typically targeted by monoclonal antibodies. The second group is almost exclusively focused to the RBD-ACE2 interface and fails to neutralize pseudoviruses carrying the E484K or N501Y substitutions. Notably however, they do neutralize the RBD variants when expressed as homotrimers, rivaling the most potent antibodies produced to date against SARS-CoV-2. These findings demonstrate that multivalent nanobodies overcome SARS-CoV-2 variant mutations through two separate mechanisms: enhanced avidity for the ACE2 binding domain, and recognition of conserved epitopes largely inaccessible to human antibodies. Therefore, while new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.03.04.433768DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941635PMC
March 2021

mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants.

Nature 2021 04 10;592(7855):616-622. Epub 2021 Feb 10.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Here we report on the antibody and memory B cell responses of a cohort of 20 volunteers who received the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccine against SARS-CoV-2. Eight weeks after the second injection of vaccine, volunteers showed high levels of IgM and IgG anti-SARS-CoV-2 spike protein (S) and receptor-binding-domain (RBD) binding titre. Moreover, the plasma neutralizing activity and relative numbers of RBD-specific memory B cells of vaccinated volunteers were equivalent to those of individuals who had recovered from natural infection. However, activity against SARS-CoV-2 variants that encode E484K-, N501Y- or K417N/E484K/N501-mutant S was reduced by a small-but significant-margin. The monoclonal antibodies elicited by the vaccines potently neutralize SARS-CoV-2, and target a number of different RBD epitopes in common with monoclonal antibodies isolated from infected donors. However, neutralization by 14 of the 17 most-potent monoclonal antibodies that we tested was reduced or abolished by the K417N, E484K or N501Y mutation. Notably, these mutations were selected when we cultured recombinant vesicular stomatitis virus expressing SARS-CoV-2 S in the presence of the monoclonal antibodies elicited by the vaccines. Together, these results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid a potential loss of clinical efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03324-6DOI Listing
April 2021

Convalescent plasma-mediated resolution of COVID-19 in a patient with humoral immunodeficiency.

Cell Rep Med 2021 Jan 5;2(1):100164. Epub 2020 Dec 5.

Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Convalescent plasma (CP) is widely used to treat COVID-19, but without formal evidence of efficacy. Here, we report the beneficial effects of CP in a severely ill COVID-19 patient with prolonged pneumonia and advanced chronic lymphocytic leukemia (CLL), who was unable to generate an antiviral antibody response of her own. On day 33 after becoming symptomatic, the patient received CP containing high-titer (ID > 5,000) neutralizing antibodies (NAbs), defervesced, and improved clinically within 48 h and was discharged on day 37. Hence, when present in sufficient quantities, NAbs to SARS-CoV-2 have clinical benefit even if administered relatively late in the disease course. However, analysis of additional CP units revealed widely varying NAb titers, with many recipients exhibiting endogenous NAb responses far exceeding those of the administered units. To obtain the full therapeutic benefits of CP immunotherapy, it will thus be important to determine the neutralizing activity in both CP units and transfusion candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xcrm.2020.100164DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817775PMC
January 2021

mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants.

bioRxiv 2021 Jan 19. Epub 2021 Jan 19.

To date severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected nearly 100 million individuals resulting in over two million deaths. Many vaccines are being deployed to prevent coronavirus disease-2019 (COVID-19) including two novel mRNA-based vaccines . These vaccines elicit neutralizing antibodies and appear to be safe and effective, but the precise nature of the elicited antibodies is not known . Here we report on the antibody and memory B cell responses in a cohort of 20 volunteers who received either the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines. Consistent with prior reports, 8 weeks after the second vaccine injection volunteers showed high levels of IgM, and IgG anti-SARS-CoV-2 spike protein (S), receptor binding domain (RBD) binding titers . Moreover, the plasma neutralizing activity, and the relative numbers of RBD-specific memory B cells were equivalent to individuals who recovered from natural infection . However, activity against SARS-CoV-2 variants encoding E484K or N501Y or the K417N:E484K:N501Y combination was reduced by a small but significant margin. Consistent with these findings, vaccine-elicited monoclonal antibodies (mAbs) potently neutralize SARS-CoV-2, targeting a number of different RBD epitopes epitopes in common with mAbs isolated from infected donors. Structural analyses of mAbs complexed with S trimer suggest that vaccine- and virus-encoded S adopts similar conformations to induce equivalent anti-RBD antibodies. However, neutralization by 14 of the 17 most potent mAbs tested was reduced or abolished by either K417N, or E484K, or N501Y mutations. Notably, the same mutations were selected when recombinant vesicular stomatitis virus (rVSV)/SARS-CoV-2 S was cultured in the presence of the vaccine elicited mAbs. Taken together the results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid potential loss of clinical efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.01.15.426911DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836122PMC
January 2021

Bispecific antibody prevents SARS-CoV-2 escape and protects mice from disease.

bioRxiv 2021 Jan 22. Epub 2021 Jan 22.

Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19) . We developed a bispecific, IgG1-like molecule based on two antibodies derived from COVID-19 convalescent donors, C121 and C135 . CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, completely prevents S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor. Furthermore, CoV-X2 recognizes a broad panel of RBD variants and neutralizes SARS-CoV-2 and the escape mutants generated by the single monoclonals at sub-nanomolar concentrations. In a novel model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, combining into a single molecule the advantages of antibody cocktails.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.01.22.427567DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836104PMC
January 2021

Evolution of antibody immunity to SARS-CoV-2.

Nature 2021 03 18;591(7851):639-644. Epub 2021 Jan 18.

Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03207-wDOI Listing
March 2021

A Recombinant Protein SARS-CoV-2 Candidate Vaccine Elicits High-titer Neutralizing Antibodies in Macaques.

Res Sq 2021 Jan 5. Epub 2021 Jan 5.

Vaccines that generate robust and long-lived protective immunity against SARS-CoV-2 infection are urgently required. We assessed the potential of vaccine candidates based on the SARS-CoV-2 spike in cynomolgus macaques ( ) by examining their ability to generate spike binding antibodies with neutralizing activity. Antigens were derived from two distinct regions of the spike S1 subunit, either the N-terminal domain or an extended C-terminal domain containing the receptor-binding domain and were fused to the human IgG1 Fc domain. Three groups of 2 animals each were immunized with either antigen, alone or in combination. The development of antibody responses was evaluated through 20 weeks post-immunization. A robust IgG response to the spike protein was detected as early as 2 weeks after immunization with either protein and maintained for over 20 weeks. Sera from animals immunized with antigens derived from the RBD were able to prevent binding of soluble spike proteins to the ACE2 receptor, shown by binding assays, while sera from animals immunized with the N-terminal domain alone lacked this activity. Crucially, sera from animals immunized with the extended receptor binding domain but not the N-terminal domain had potent neutralizing activity against SARS-CoV-2 pseudotyped virus, with titers in excess of 10,000, greatly exceeding that typically found in convalescent humans. Neutralizing activity persisted for more than 20 weeks. These data support the utility of spike subunit-based antigens as a vaccine for use in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21203/rs.3.rs-137857/v1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805460PMC
January 2021

Mechanisms of Attenuation by Genetic Recoding of Viruses.

mBio 2021 01 5;12(1). Epub 2021 Jan 5.

Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA

The development of safe and effective vaccines against viruses is central to disease control. With advancements in DNA synthesis technology, the production of synthetic viral genomes has fueled many research efforts that aim to generate attenuated viruses by introducing synonymous mutations. Elucidation of the mechanisms underlying virus attenuation through synonymous mutagenesis is revealing interesting new biology that can be exploited for vaccine development. Here, we review recent advancements in this field of synthetic virology and focus on the molecular mechanisms of attenuation by genetic recoding of viruses. We highlight the action of the zinc finger antiviral protein (ZAP) and RNase L, two proteins involved in the inhibition of viruses enriched for CpG and UpA dinucleotides, that are often the products of virus recoding algorithms. Additionally, we discuss current challenges in the field as well as studies that may illuminate how other host functions, such as translation, are potentially involved in the attenuation of recoded viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.02238-20DOI Listing
January 2021

Enhanced SARS-CoV-2 neutralization by dimeric IgA.

Sci Transl Med 2021 01 7;13(577). Epub 2020 Dec 7.

Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), primarily infects cells at mucosal surfaces. Serum neutralizing antibody responses are variable and generally low in individuals that suffer mild forms of COVID-19. Although potent immunoglobulin G (IgG) antibodies can neutralize the virus, less is known about secretory antibodies such as IgA that might affect the initial viral spread and transmissibility from the mucosa. Here, we characterize the IgA response to SARS-CoV-2 in a cohort of 149 convalescent individuals after diagnosis with COVID-19. IgA responses in plasma generally correlated with IgG responses. Furthermore, clones of IgM-, IgG-, and IgA-producing B cells were derived from common progenitor cells. Plasma IgA monomers specific to SARS-CoV-2 proteins were demonstrated to be twofold less potent than IgG equivalents. However, IgA dimers, the primary form of antibody in the nasopharynx, were, on average, 15 times more potent than IgA monomers against the same target. Thus, dimeric IgA responses may be particularly valuable for protection against SARS-CoV-2 and for vaccine efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.abf1555DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857415PMC
January 2021

Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo.

J Exp Med 2021 03;218(3)

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.

SARS-CoV-2, the causative agent of COVID-19, has been responsible for over 42 million infections and 1 million deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here, we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a Syrian hamster model of SARS-CoV-2 and in a mouse-adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). Antibody combinations were effective for prevention and in therapy when administered early. However, in vitro antibody neutralization potency did not uniformly correlate with in vivo protection, and some hu-mAbs were more protective in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors contributes to optimal protection against SARS-CoV-2 MA. The data indicate that intact effector function can affect hu-mAb protective activity and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20201993DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673958PMC
March 2021

Evolution of Antibody Immunity to SARS-CoV-2.

bioRxiv 2020 Nov 5. Epub 2020 Nov 5.

SARS-CoV-2 has infected 47 million individuals and is responsible for over 1.2 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. We find that IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 3 months after COVID-19 onset, using immunofluorescence, electron tomography or polymerase chain reaction, revealed persistence of SARS-CoV-2 in the small bowel of 7 out of 14 volunteers. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.11.03.367391DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654855PMC
November 2020

Longitudinal Serological Analysis and Neutralizing Antibody Levels in Coronavirus Disease 2019 Convalescent Patients.

J Infect Dis 2021 02;223(3):389-398

Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA.

Background: Understanding the longitudinal trajectory of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies is crucial for diagnosis of prior infection and predicting future immunity.

Methods: We conducted a longitudinal analysis of coronavirus disease 2019 convalescent patients, with neutralizing antibody assays and SARS-CoV-2 serological assay platforms using SARS-CoV-2 spike (S) or nucleocapsid (N) antigens.

Results: Sensitivities of serological assays in diagnosing prior SARS-CoV-2 infection changed with time. One widely used commercial platform that had an initial sensitivity of >95% declined to 71% at 81-100 days after diagnosis. The trajectories of median binding antibody titers measured over approximately 3-4 months were not dependent on the use of SARS-CoV-2 N or S proteins as antigen. The median neutralization titer decreased by approximately 45% per month. Each serological assay gave quantitative antibody titers that were correlated with SARS-CoV-2 neutralization titers, but S-based serological assay measurements better predicted neutralization potency. Correlation between S-binding and neutralization titers deteriorated with time, and decreases in neutralization titers were not predicted by changes in S-binding antibody titers.

Conclusions: Different SARS-CoV-2 serological assays are more or less well suited for surveillance versus prediction of serum neutralization potency. Extended follow-up should facilitate the establishment of appropriate serological correlates of protection against SARS-CoV-2 reinfection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiaa659DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665595PMC
February 2021

Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants.

Elife 2020 10 28;9. Epub 2020 Oct 28.

Laboratory of Retrovirology, The Rockefeller University, New York, United States.

Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor-binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.61312DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723407PMC
October 2020

Antibody potency, effector function and combinations in protection from SARS-CoV-2 infection .

bioRxiv 2020 Sep 15. Epub 2020 Sep 15.

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.

SARS-CoV-2, the causative agent of COVID-19, is responsible for over 24 million infections and 800,000 deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a mouse adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). antibody neutralization potency did not uniformly correlate with activity, and some hu-mAbs were more potent in combination . Analysis of antibody Fc regions revealed that binding to activating Fc receptors is essential for optimal protection against SARS-CoV-2 MA. The data indicate that hu-mAb protective activity is dependent on intact effector function and that testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.09.15.298067DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523108PMC
September 2020

Enhanced SARS-CoV-2 Neutralization by Secretory IgA in vitro.

bioRxiv 2020 Sep 9. Epub 2020 Sep 9.

Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.

SARS-CoV-2 primarily infects cells at mucosal surfaces. Serum neutralizing antibody responses are variable and generally low in individuals that suffer mild forms of the illness. Although potent IgG antibodies can neutralize the virus, less is known about secretory antibodies such as IgA that might impact the initial viral spread and transmissibility from the mucosa. Here we characterize the IgA response to SARS-CoV-2 in a cohort of 149 individuals. IgA responses in plasma generally correlate with IgG responses and clones of IgM, IgG and IgA producing B cells that are derived from common progenitors are evident. Plasma IgA monomers are 2-fold less potent than IgG equivalents. However, IgA dimers, the primary form in the nasopharynx, are on average 15 times more potent than IgA monomers. Thus, secretory IgA responses may be particularly valuable for protection against SARS-CoV-2 and for vaccine efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.09.09.288555DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491508PMC
September 2020

Serological Assays Estimate Highly Variable SARS-CoV-2 Neutralizing Antibody Activity in Recovered COVID-19 Patients.

J Clin Microbiol 2020 11 18;58(12). Epub 2020 Nov 18.

Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA

The development of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following infection or vaccination is likely to be critical for the development of sufficient population immunity to drive cessation of the coronavirus disease of 2019 (COVID-19) pandemic. A large number of serologic tests, platforms, and methodologies are being employed to determine seroprevalence in populations to select convalescent plasma samples for therapeutic trials and to guide policies about reopening. However, the tests have substantial variations in sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma samples using commercially available SARS-CoV-2 detection tests and in-house enzyme-linked immunosorbent assays (ELISAs) and correlated serological measurements with NAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have various degrees of accuracy in predicting NAb activity. We found that the Ortho anti-SARS-CoV-2 total Ig and IgG high-throughput serological assays (HTSAs) and the Abbott SARS-CoV-2 IgG assay quantify levels of antibodies that strongly correlate with the results of NAb assays and are consistent with gold standard ELISA results. These findings provide immediate clinical relevance to serology results that can be equated to NAb activity and could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARS-CoV-2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JCM.02005-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685895PMC
November 2020

Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents.

medRxiv 2020 Aug 6. Epub 2020 Aug 6.

Royal Infirmary of Edinburgh, NHS Lothian, 51 Little France Crescent, Edinburgh EH16 4SA.

Objectives: To investigate longitudinal trajectory of SARS-CoV-2 neutralising antibodies and the performance of serological assays in diagnosing prior infection and predicting serum neutralisation titres with time Design Retrospective longitudinal analysis of a COVID19 case cohort . Setting NHS outpatient clinics Participants Individuals with RT-PCR diagnosed SARS-CoV-2 infection that did not require hospitalization Main outcome measures The sensitivity with which prior infection was detected and quantitative antibody titres were assessed using four SARS-CoV-2 serologic assay platforms. Two platforms employed SARS-CoV-2 spike (S) based antigens and two employed nucleocapsid (N) based antigens. Serum neutralising antibody titres were measured using a validated pseudotyped virus SARS-CoV-2 neutralisation assay. The ability of the serological assays to predict neutralisation titres at various times after PCR diagnosis was assessed. Results The three of the four serological assays had sensitivities of 95 to100% at 21-40 days post PCR-diagnosis, while a fourth assay had a lower sensitivity of 85%. The relative sensitivities of the assays changed with time and the sensitivity of one assay that had an initial sensitivity of >95% declined to 85% at 61-80 post PCR diagnosis, and to 71% at 81-100 days post diagnosis. Median antibody titres decreased in one serologic assay but were maintained over the observation period in other assays. The trajectories of median antibody titres measured in serologic assays over this time period were not dependent on whether the SARS-CoV-2 N or S proteins were used as antigen source. A broad range of SARS-CoV-2 neutralising titres were evident in individual sera, that decreased over time in the majority of participants; the median neutralisation titre in the cohort decreased by 45% over 4 weeks. Each of the serological assays gave quantitative measurements of antibody titres that correlated with SARS-CoV-2 neutralisation titres, but, the S-based serological assay measurements better predicted serum neutralisation potency. The strength of correlation between serologic assay results and neutralisation titres deteriorated with time and decreases in neutralisation titres in individual participants were not well predicted by changes in antibody titres measured using serologic assays.

Conclusions: SARS-CoV-2 serologic assays differed in their comparative diagnostic performance over time. Different assays are more or less well suited for surveillance of populations for prior infection versus prediction of serum neutralisation potency. Continued monitoring of declining neutralisation titres during extended follow up should facilitate the establishment of appropriate serologic correlates of protection against SARS-CoV-2 reinfection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.08.05.20169128DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418752PMC
August 2020

Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants.

bioRxiv 2020 Jul 22. Epub 2020 Jul 22.

Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.07.21.214759DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386497PMC
July 2020

Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses.

J Exp Med 2020 11;217(11)

Laboratory of Retrovirology, The Rockefeller University, New York, NY.

The emergence of SARS-CoV-2 and the ensuing explosive epidemic of COVID-19 disease has generated a need for assays to rapidly and conveniently measure the antiviral activity of SARS-CoV-2-specific antibodies. Here, we describe a collection of approaches based on SARS-CoV-2 spike-pseudotyped, single-cycle, replication-defective human immunodeficiency virus type-1 (HIV-1), and vesicular stomatitis virus (VSV), as well as a replication-competent VSV/SARS-CoV-2 chimeric virus. While each surrogate virus exhibited subtle differences in the sensitivity with which neutralizing activity was detected, the neutralizing activity of both convalescent plasma and human monoclonal antibodies measured using each virus correlated quantitatively with neutralizing activity measured using an authentic SARS-CoV-2 neutralization assay. The assays described herein are adaptable to high throughput and are useful tools in the evaluation of serologic immunity conferred by vaccination or prior SARS-CoV-2 infection, as well as the potency of convalescent plasma or human monoclonal antibodies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20201181DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372514PMC
November 2020

Inhibition of spumavirus gene expression by PHF11.

PLoS Pathog 2020 07 17;16(7):e1008644. Epub 2020 Jul 17.

Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America.

The foamy viruses (FV) or spumaviruses are an ancient subfamily of retroviruses that infect a variety of vertebrates. FVs are endemic, but apparently apathogenic, in modern non-human primates. Like other retroviruses, FV replication is inhibited by type-I interferon (IFN). In a previously described screen of IFN-stimulated genes (ISGs), we identified the macaque PHD finger domain protein-11 (PHF11) as an inhibitor of prototype foamy virus (PFV) replication. Here, we show that human and macaque PHF11 inhibit the replication of multiple spumaviruses, but are inactive against several orthoretroviruses. Analysis of other mammalian PHF11 proteins revealed that antiviral activity is host species dependent. Using multiple reporter viruses and cell lines, we determined that PHF11 specifically inhibits a step in the replication cycle that is unique to FVs, namely basal transcription from the FV internal promoter (IP). In so doing, PHF11 prevents expression of the viral transactivator Tas and subsequent activation of the viral LTR promoter. These studies reveal a previously unreported inhibitory mechanism in mammalian cells, that targets a family of ancient viruses and may promote viral latency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1008644DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390438PMC
July 2020