Publications by authors named "Pasquale Striano"

491 Publications

Symptomatic eating epilepsy: two novel pediatric patients and review of literature.

Ital J Pediatr 2021 Jun 12;47(1):137. Epub 2021 Jun 12.

Pediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini", Genoa, Italy.

Eating epilepsy (EE) is a form of reflex epilepsy in which seizures are triggered by eating. It is a rare condition but a high prevalence has been reported in Sri Lanka. In EE, the ictal semiology includes focal seizures with or without secondary generalization or generalized seizures. Some cases are idiopathic while focal structural changes on imaging, if present, are often confined to the temporal lobe or perisylvian region. On the other hand, some cases support the hypothesis of a genetic aetiology. The prognosis of EE is extremely variable due to the different nature of the underlying disorder. We describe two patients with symptomatic eating epilepsy, a 13-year-old boy with a bilateral perisylvian polymicrogyria and a 2-year-old boy with a genetic cause. The presence of structural lesions or the dysfunction of specific cortical regions in the context of a germline genetic alteration might lead to a hyperexcitation fostering the epileptogenesis. We review the available literature to clarify the aetiopathogenesis and the mechanisms underlying EE to improve the diagnosis and the management of these rare conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13052-021-01051-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199818PMC
June 2021

KCNT1-related epilepsies and epileptic encephalopathies: phenotypic and mutational spectrum.

Brain 2021 Jun 11. Epub 2021 Jun 11.

Pediatric Neurology Department, Lyon University Hospital, 69500 Bron, France.

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy ((AD)SHE) to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies (DEE). This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 unpreviously published and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: i) EIMFS (152 individuals, 33 previously unpublished); ii) DEE other than EIMFS (non-EIMFS DEE) (37 individuals, 17 unpublished); iii) (AD)SHE (53 patients, 14 unpublished); iv) other phenotypes (6 individuals, 2 unpublished). In our cohort of 66 new cases, the most common phenotypic features were: a) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; b) in non-EIMFS DEE, possible onset with West syndrome, occurrence of atypical absences, possible evolution to DEE with SHE features; one case of sudden unexplained death in epilepsy (SUDEP); c) in (AD)SHE, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in about 50% of the patients, SUDEP in one individual; d) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the (AD)SHE-associated mutations to be clustered around the RCK2 domain in the C-terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS DEE did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset DEEs as well as in focal epilepsies, namely (AD)SHE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab219DOI Listing
June 2021

Results From an Italian Expanded Access Program on Cannabidiol Treatment in Highly Refractory Dravet Syndrome and Lennox-Gastaut Syndrome.

Front Neurol 2021 20;12:673135. Epub 2021 May 20.

Pediatric Neurology and Epileptology Unit, Brotzu Hospital Trust, Cagliari, Italy.

Purified cannabidiol (CBD) was administered to highly refractory patients with Dravet (DS) or Lennox-Gastaut (LGS) syndromes in an ongoing expanded access program (EAP). Herein, we report interim results on CBD safety and seizure outcomes in patients treated for a 12-month period. Thirty centers were enrolled from December 2018 to December 2019 within the open-label prospective EAP up to a maximum of 25 mg/kg per day. Adverse effects and liver function tests were assessed after 2 weeks; 1, 3, and 6 months of treatment; and periodically thereafter. Seizure endpoints were the percentage of patients with ≥50 and 100% reduction in seizures compared to baseline. A total of 93 patients were enrolled and included in the safety analysis. Eighty-two patients [27 (32.9%) DS, 55 (67.1%) LGS] with at least 3 months of treatment have been included in the effectiveness analysis; median previously failed antiseizure medications was eight. Pediatric and adult patients were uniformly represented in the cohort. At 3-month follow-up, compared to the 28-day baseline period, the percentage of patients with at least a 50% reduction in seizure frequency was 40.2% (plus 1.2% seizure-free). Retention rate was similar according to diagnosis, while we found an increased number of patients remaining under treatment in the adult group. CBD was mostly coadministered with valproic acid (62.2%) and clobazam (41.5%). In the safety dataset, 29 (31.2%) dropped out: reasons were lack of efficacy [16 (17.2%)] and adverse events (AEs) [12 (12.9%)], and one met withdrawal criteria (1.1%). Most reported AEs were somnolence (22.6%) and diarrhea (11.9%), followed by transaminase elevation and loss of appetite. CBD is associated with improved seizure control also in a considerable proportion of highly refractory patients with DS and LGS independently from clobazam use. Overall, CBD safety and effectiveness are not dose-related in this cohort.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2021.673135DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173151PMC
May 2021

Clinical and Genetic Features in Patients With Reflex Bathing Epilepsy.

Neurology 2021 Jun 2. Epub 2021 Jun 2.

Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.

Objective: To describe the clinical and genetic findings in a cohort of subjects with bathing epilepsy, a rare form of reflex epilepsy.

Methods: We investigated by Sanger and targeted re-sequencing the gene in 12 individuals from 10 different families presenting with seizures primarily triggered by bathing or showering. Additional twelve subjects with hot-water epilepsy were also screened.

Results: In all families with bathing epilepsy we identified 8 distinct pathogenic or likely pathogenic variants and 2 variants of unknown significance in , nine of which are . Conversely, none of the subjects with hot-water epilepsy displayed variants. In mutated subjects, seizures were typically triggered by showering or bathing regardless of the water temperature. Additional triggers included fingernail-clipping, hair-cutting, or watching someone take a shower. Non-provoked seizures and a variable degree of developmental delay were also common.

Conclusion: bathing epilepsy is genetically distinct reflex epilepsy mainly caused by mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000012298DOI Listing
June 2021

The brain-heart interaction in epilepsy: implications for diagnosis, therapy, and SUDEP prevention.

Ann Clin Transl Neurol 2021 May 28. Epub 2021 May 28.

IRCCS Istituto Giannina Gaslini, Genova, Italy.

The influence of the central nervous system and autonomic system on cardiac activity is being intensively studied, as it contributes to the high rate of cardiologic comorbidities observed in people with epilepsy. Indeed, neuroanatomic connections between the brain and the heart provide links that allow cardiac arrhythmias to occur in response to brain activation, have been shown to produce arrhythmia both experimentally and clinically. Moreover, seizures may induce a variety of transient cardiac effects, which include changes in heart rate, heart rate variability, arrhythmias, asystole, and other ECG abnormalities, and can trigger the development of Takotsubo syndrome. People with epilepsy are at a higher risk of death than the general population, and sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. Although the cause of SUDEP is still unknown, cardiac abnormalities during and between seizures could play a significant role in its pathogenesis, as highlighted by studies on animal models of SUDEP and registration of SUDEP events. Recently, genetic mutations in genes co-expressed in the heart and brain, which may result in epilepsy and cardiac comorbidity/increased risk for SUDEP, have been described. Recognition and a better understanding of brain-heart interactions, together with new advances in sequencing techniques, may provide new insights into future novel therapies and help in the prevention of cardiac dysfunction and sudden death in epileptic individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acn3.51382DOI Listing
May 2021

Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy.

Ann Clin Transl Neurol 2021 May 21. Epub 2021 May 21.

Université de Montréal, Montreal, Canada.

Objective: Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance.

Methods: We performed exome sequencing of 1,128 individuals with non-familial non-acquired focal epilepsy (NAFE) (762 non-responders, 366 responders) and were provided with 1,734 healthy controls. We undertook replication in a cohort of 350 individuals with NAFE (165 non-responders, 185 responders). We performed gene-based and gene-set-based kernel association tests to investigate potential enrichment of rare variants in relation to drug response status and to risk for NAFE.

Results: We found no gene or gene set that reached genome-wide significance. Yet, we identified several prospective candidate genes - among them DEPDC5, which showed a potential association with resistance to ASMs. We found some evidence for an enrichment of truncating variants in dominant familial NAFE genes in our cohort of non-familial NAFE and in association with drug-resistant NAFE.

Interpretation: Our study identifies potential candidate genes for ASM resistance. Our results corroborate the role of rare variants for non-familial NAFE and imply their involvement in drug-resistant epilepsy. Future large-scale genetic research studies are needed to substantiate these findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acn3.51374DOI Listing
May 2021

An Open Retrospective Study of a Standardized Cannabidiol Based-Oil in Treatment-Resistant Epilepsy.

Cannabis Cannabinoid Res 2020 Jul 21. Epub 2020 Jul 21.

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.

Cannabidiol (CBD) has antiseizure properties but no psychoactive effects. Randomized controlled trials of an oral, pharmaceutical formulation of highly purified CBD are promising; however, data regarding other formulations are sparse and anecdotal. We evaluated the effectiveness of add-on therapy with a standardized CBD-based oil in treatment-resistant epilepsy (TRE) patients. An open retrospective study was carried out on patients with refractory epilepsy of different etiology. We reviewed clinical data from medical charts and caregiver's information. Participants received add-on with 24% CBD-based oil, sublingually administered, at the starting dose of 5-10 mg/[kg·day] up to the maximum dose of 50 mg/[kg·day], based on clinical efficacy. Efficacy was evaluated based on patients being seizure free or experiencing at ≥50% improvement on seizure frequency. Tolerability and suspected adverse drug reaction data were also analyzed. We included 37 patients (46% female) with a median age of 16.1 (range: 2-54) years. Twenty-two (60%) patients suffered from epileptic encephalopathy, 9 (24%) from focal epilepsy, and 6 (16%) from generalized epilepsy. Mean follow-up duration was 68 (range: 24-72) weeks. The average age at seizure onset was 3.8±2.1 years (range: 7 days-21 years). The median achieved CBD-based oil dose was 4.2±11.4 (range: 0.6-50) mg/[kg·day]. At 40-month follow-up, 7 (19%) patients were seizure free, 27 (73%) reported >50% improvement, 2 (5%) patients reported <50% improvement, and 1 patient discontinued therapy due to lack of efficacy. Weaning from concomitant antiepileptic drugs was obtained after 24 weeks from CBD introduction in 10 subjects. Mild and transitory adverse events, including somnolence or loss of appetite, occurred in nine (25%) patients. We showed the efficacy of a CBD-based oil formulation with few significant side effects in patients with TRE of various etiologies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/can.2019.0082DOI Listing
July 2020

Diagnostic and therapeutic approach to drug-resistant juvenile myoclonic epilepsy.

Expert Rev Neurother 2021 May 25:1-9. Epub 2021 May 25.

Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.

Introduction: Juvenile myoclonic epilepsy (JME), also known as Janz syndrome, is a common form of generalized epilepsy of presumed genetic origin representing up to 10% of all epilepsy cases. Despite adequate anti-seizure medication (ASM) treatment, seizures persist in one-third of JME patients.

Areas Covered: A literature search was conducted using Pubmed search on the topics of drug-resistant JME.

Expert Opinion: About 30% of JME patients are drug-resistant. Valproate (VPA) is considered the first-choice drug. In women of childbearing potential, levetiracetam (LEV) should represent the first-choice treatment. Alternative monotherapy or add-on therapy should be considered in subjects with resistant seizures after the exclusion of pseudo-drug resistance. The choice of the add-on ASM depends on the predominant seizure type. In subjects with persistent bilateral tonic-clonic seizures, LEV or lamotrigine should be firstly considered. In patients with difficult-to-treat myoclonic seizures, clonazepam or LEV are recommended. In case of persistent absences, ethosuximide should be considered. With appropriate selection and safeguards in place, VPA should remain available as an option in women of childbearing potential whose seizures are resistant to other treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14737175.2021.1931126DOI Listing
May 2021

Biallelic Variants in Associated with Microphthalmia and Coloboma Spectrum.

Int J Mol Sci 2021 Apr 25;22(9). Epub 2021 Apr 25.

Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, Unit of Pediatric Nephrology and Dialysis, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy.

Microphthalmia, anophthalmia, and coloboma (MAC) are a group of congenital eye anomalies that can affect one or both eyes. Patients can present one or a combination of these ocular abnormalities in the so called "MAC spectrum". The gene encodes the kinesin-like protein Kif17, a microtubule-based, ATP-dependent, motor protein that is pivotal for outer segment development and disc morphogenesis in different animal models, including mice and zebrafish. In this report, we describe a Sicilian family with two siblings affected with congenital coloboma, microphthalmia, and a mild delay of motor developmental milestones. Genomic DNA from the siblings and their unaffected parents was sequenced with a clinical exome that revealed compound heterozygous variants in the gene (NM_020816.4: c.1255C > T (p.Arg419Trp); c.2554C > T (p.Arg852Cys)) segregating with the MAC spectrum phenotype of the two affected siblings. Variants were inherited from the healthy mother and father, are present at a very low-frequency in genomic population databases, and are predicted to be deleterious in silico. Our report indicates the potential co-segregation of these biallelic variants with microphthalmia and coloboma, highlighting a potential conserved role of this gene in eye development across different species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22094471DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123208PMC
April 2021

Genotype-Phenotype Correlations in Neurofibromatosis Type 1: A Single-Center Cohort Study.

Cancers (Basel) 2021 Apr 14;13(8). Epub 2021 Apr 14.

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy.

Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in and characterized by a heterogeneous phenotypic presentation. Relevant genotype-phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1. Of these, 365 subjects fulfilled ≥2 NIH criteria, including 235 pediatric patients. Genetic testing was performed through cDNA-based sequencing, Next Generation Sequencing (NGS), and Multiplex Ligation-dependent Probe Amplification (MLPA). Uni- and multivariate statistical analysis was used to investigate genotype-phenotype correlations. Among patients fulfilling ≥ 2 NIH criteria, causative single nucleotide variants (SNVs) and copy number variations (CNVs) were detected in 267/365 (73.2%) and 20/365 (5.5%) cases. Missense variants negatively correlated with neurofibromas ( = 0.005). Skeletal abnormalities were associated with whole gene deletions ( = 0.05) and frameshift variants ( = 0.006). The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations ( = 0.031), whereas Lisch nodules ( = 0.05) and endocrinological disorders ( = 0.043) were associated with the c.6855C>A; p.(Y2285*) variant. We identified novel NF1 genotype-phenotype correlations and provided an overview of known associations, supporting their potential relevance in the implementation of patient management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13081879DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070780PMC
April 2021

Real-life survey of pitfalls and successes of precision medicine in genetic epilepsies.

J Neurol Neurosurg Psychiatry 2021 Apr 26. Epub 2021 Apr 26.

Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK

Objective: The term 'precision medicine' describes a rational treatment strategy tailored to one person that reverses or modifies the disease pathophysiology. In epilepsy, single case and small cohort reports document nascent precision medicine strategies in specific genetic epilepsies. The aim of this multicentre observational study was to investigate the deeper complexity of precision medicine in epilepsy.

Methods: A systematic survey of patients with epilepsy with a molecular genetic diagnosis was conducted in six tertiary epilepsy centres including children and adults. A standardised questionnaire was used for data collection, including genetic findings and impact on clinical and therapeutic management.

Results: We included 293 patients with genetic epilepsies, 137 children and 156 adults, 162 females and 131 males. Treatment changes were undertaken because of the genetic findings in 94 patients (32%), including rational precision medicine treatment and/or a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms. There was a rational precision medicine treatment for 56 patients (19%), and this was tried in 33/56 (59%) and was successful (ie, >50% seizure reduction) in 10/33 (30%) patients. In 73/293 (25%) patients there was a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms, and this was successful in 24/73 (33%).

Significance: Our survey of clinical practice in specialised epilepsy centres shows high variability of clinical outcomes following the identification of a genetic cause for an epilepsy. Meaningful change in the treatment paradigm after genetic testing is not yet possible for many people with epilepsy. This systematic survey provides an overview of the current application of precision medicine in the epilepsies, and suggests the adoption of a more considered approach.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2020-325932DOI Listing
April 2021

Homozygous SCN1B variants causing early infantile epileptic encephalopathy 52 affect voltage-gated sodium channel function.

Epilepsia 2021 Jun 26;62(6):e82-e87. Epub 2021 Apr 26.

Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium.

We identified nine patients from four unrelated families harboring three biallelic variants in SCN1B (NM_001037.5: c.136C>T; p.[Arg46Cys], c.178C>T; p.[Arg60Cys], and c.472G>A; p.[Val158Met]). All subjects presented with early infantile epileptic encephalopathy 52 (EIEE52), a rare, severe developmental and epileptic encephalopathy featuring infantile onset refractory seizures followed by developmental stagnation or regression. Because SCN1B influences neuronal excitability through modulation of voltage-gated sodium (Na ) channel function, we examined the effects of human SCN1B (β1 ), SCN1B (β1 ), and SCN1B (β1 ) on the three predominant brain Na channel subtypes Na 1.1 (SCN1A), Na 1.2 (SCN2A), and Na 1.6 (SCN8A). We observed a shift toward more depolarizing potentials of conductance-voltage relationships (Na 1.2/β1 , Na 1.2/β1 , Na 1.6/β1 , Na 1.6/β1 , and Na 1.6/β1 ) and channel availability (Na 1.1/β1 , Na 1.1/β1 , Na 1.2/β1 , Na 1.2/β1 , and Na 1.6/β1 ), and detected a slower recovery from fast inactivation for Na 1.1/β1 . Combined with modeling data indicating perturbation-induced structural changes in β1, these results suggest that the SCN1B variants reported here can disrupt normal Na channel function in the brain, which may contribute to EIEE52.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.16913DOI Listing
June 2021

An update on brivaracetam for the treatment of pediatric partial epilepsy.

Expert Opin Pharmacother 2021 May 12:1-9. Epub 2021 May 12.

Department of Pediatrics, University of Perugia, Perugia, Italy.

: Brivaracetam (BRV) is an antiseizure medication (ASM), which has been approved as an adjunctive treatment in adults and pediatric patients aged four years and older with focal onset seizures. It is a second-generation levetiracetam (LEV) derivative, sharing the same mechanism of action, binding synaptic vesicles 2A (SV2A). BRV shows higher binding affinity and selectivity and higher brain permeability than LEV.: This article reviews randomized controlled trials, retrospective and prospective studies published up to December 2020, searched in electronic databases MEDLINE, EMBASE and the Clinical Trial Database and provide an overview of efficacy, safety and tolerability of BRV in pediatric patients with partial epilepsy. Furthermore, the authors provide their expert opinion on the drug and give their future perspectives.: The analysis of the literature data has demonstrated the safety and efficacy of BRV in pediatric patients, with more evidence in children aged 4 to 16 years with an onset of focal seizures. However, a positive response was also achieved in patients affected by some encephalopathic epilepsies. Comparative efficacy studies between BRV and other ASMs, in addition to well-designed RCTs that include larger pediatric populations are needed to better define the role and potentiality of this ASM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14656566.2021.1921151DOI Listing
May 2021

Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy.

Brain 2021 Apr 15. Epub 2021 Apr 15.

Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan.

Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities. Bonora et al. identify a new mitochondrial recessive disorder caused by biallelic variants in the LIG3 gene encoding DNA ligase III, which is responsible for mitochondrial DNA repair. Clinical signs include gut dysmotility and neurological features such as leucoencephalopathy, epilepsy and stroke-like episodes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab056DOI Listing
April 2021

Temporal-parietal-occipital epilepsy in GEFS+ associated with SCN1A mutation.

Epileptic Disord 2021 Apr;23(2):397-401

Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy.

Most families with genetic epilepsy with febrile seizures plus show a mutation in the sodium channel alpha 1 subunit gene, however, but there is much phenotypic heterogeneity and focal epilepsy remains relatively rare. Here, we report a family with electroclinical features indicative of temporal-parietal-occipital carrefour epilepsy with common occurrence of post-ictal migraine. We studied a four-generation family including nine affected subjects by means of EEG and MRI. Genetic testing was performed by targeted re-sequencing (gene panel). In most patients, seizure semiology included cognitive, autonomic, and emotional symptoms, eventually evolving towards sensory visual phenomena. Focal sensory vestibular seizures and changes in body perception were also reported in some cases. Post-ictal migraine was common, occurring in five out of the six (83%) epilepsy patients. A missense mutation (c.1130 G>A; p.R377Q) affecting the S5-S6 segment (pore region) of the sodium channel alpha 1 subunit was identified in all affected and four unaffected subjects. Temporal-parietal-occipital carrefour epilepsy is part of the genetic epilepsy with febrile seizures plus spectrum. The electroclinical features in this family support the involvement of a genetically impaired neural network. High prevalence of post-ictal migraine suggests the role of posterior brain areas in the clinical expression of this gene defect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1684/epd.2021.1266DOI Listing
April 2021

Reversing Accumulation of Polyglucosan Bodies by Virally Delivered CRISPR/Cas9 Genome Editing.

Neurotherapeutics 2021 Apr 13. Epub 2021 Apr 13.

IRCCS Istituto Giannina Gaslini, Genova, Italy.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13311-021-01054-1DOI Listing
April 2021

Electroclinical features of MEF2C haploinsufficiency-related epilepsy: A multicenter European study.

Seizure 2021 May 30;88:60-72. Epub 2021 Mar 30.

Maternal and Pediatric Department, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo (FG) 71013, Italy.

Purpose: Epilepsy is a main manifestation in the autosomal dominant mental retardation syndrome caused by heterozygous variants in MEF2C. We aimed to delineate the electro-clinical features and refine the genotype-phenotype correlations in patients with MEF2C haploinsufficiency.

Methods: We thoroughly investigated 25 patients with genetically confirmed MEF2C-syndrome across 12 different European Genetics and Epilepsy Centers, focusing on the epileptic phenotype. Clinical features (seizure types, onset, evolution, and response to therapy), EEG recordings during waking/sleep, and neuroimaging findings were analyzed. We also performed a detailed literature review using the terms "MEF2C", "seizures", and "epilepsy".

Results: Epilepsy was diagnosed in 19 out of 25 (~80%) subjects, with age at onset <30 months. Ten individuals (40%) presented with febrile seizures and myoclonic seizures occurred in ~50% of patients. Epileptiform abnormalities were observed in 20/25 patients (80%) and hypoplasia/partial agenesis of the corpus callosum was detected in 12/25 patients (~50%). Nine patients harbored a 5q14.3 deletion encompassing MEF2C and at least one other gene. In 7 out of 10 patients with myoclonic seizures, MIR9-2 and LINC00461 were also deleted, whereas ADGRV1 was involved in 3/4 patients with spasms.

Conclusion: The epileptic phenotype of MEF2C-syndrome is variable. Febrile and myoclonic seizures are the most frequent, usually associated with a slowing of the background activity and irregular diffuse discharges of frontally dominant, symmetric or asymmetric, slow theta waves with interposed spike-and-waves complexes. The haploinsufficiency of ADGRV1, MIR9-2, and LINC00461 likely contributes to myoclonic seizures and spasms in patients with MEF2C syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.seizure.2021.03.025DOI Listing
May 2021

Adult phenotype of encephalopathy.

J Med Genet 2021 Apr 2. Epub 2021 Apr 2.

Neurology Department, University Hospital Antwerp, Antwerp, Belgium

Background: Pathogenic variants are a frequent cause of developmental and epileptic encephalopathy.

Methods: We recruited 13 adults (between 18 years and 45 years of age) with encephalopathy and reviewed their clinical, EEG, neuroimaging and treatment history.

Results: While most patients had daily seizures at seizure onset, seizure frequency declined or remitted during childhood and adulthood. The most common seizure type was tonic seizures (early) infancy, and tonic-clonic and focal impaired awareness seizures later in life. Ten individuals (77%) were seizure-free at last follow-up. In 38% of the individuals, earlier periods of seizure freedom lasting a minimum of 2 years followed by seizure recurrence had occurred. Of the 10 seizure-free patients, 4 were receiving a single antiseizure medication (ASM, carbamazepine, lamotrigine or levetiracetam), and 2 had stopped taking ASM. Intellectual disability (ID) ranged from mild to profound, with the majority (54%) of individuals in the severe category. At last contact, six individuals (46%) remained unable to walk independently, six (46%) had limb spasticity and four (31%) tetraparesis/tetraplegia. Six (46%) remained non-verbal, 10 (77%) had autistic features/autism, 4 (31%) exhibited aggressive behaviour and 4 (31%) destructive behaviour with self-injury. Four patients had visual problems, thought to be related to prematurity in one. Sleep problems were seen in six (46%) individuals.

Conclusion: Seizure frequency declines over the years and most patients are seizure-free in adulthood. Longer seizure-free periods followed by seizure recurrence are common during childhood and adolescence. Most adult patients have severe ID. Motor, language and behavioural problems are an issue of continuous concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-107449DOI Listing
April 2021

Progressive myoclonus epilepsies-Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes.

Am J Hum Genet 2021 04;108(4):722-738

Neurology - Neurophysiology Unit, ASST dei Sette Laghi, Galmarini Tradate Hospital, Tradate 21049, Italy.

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.03.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059372PMC
April 2021

COVID-19 and Treatment and Immunization of Children-The Time to Redefine Pediatric Age Groups is Here.

Rambam Maimonides Med J 2021 Apr 29;12(2). Epub 2021 Apr 29.

Department of Child, Adolescent & Developmental Neurology, University Children's Hospital, Ljubljana, Slovenia.

Children are infected with coronavirus disease 2019 (COVID-19) as often as adults, but with fewer symptoms. During the first wave of the COVID-19 pandemic, multisystem inflammatory syndrome (MIS) in children (MIS-C), with symptoms similar to Kawasaki syndrome, was described in young minors testing positive for COVID-19. The United States (US) Centers for Disease Control and Prevention (CDC) defined MIS-C as occurring in <21-year-olds, triggering hundreds of PubMed-listed papers. However, postpubertal adolescents are no longer children biologically; the term MIS-C is misleading. Furthermore, MIS also occurs in adults, termed MIS-A by the CDC. Acute and delayed inflammations can be triggered by COVID-19. The 18th birthday is an administrative not a biological age limit, whereas the body matures slowly during puberty. This blur in defining children leads to confusion regarding MIS-C/MIS-A. United States and European Union (EU) drug approval is handled separately for children, defined as <18-year-olds, ascribing non-existent physical characteristics up to the 18th birthday. This blur between the administrative and the physiological meanings for the term child is causing flawed demands for pediatric studies in all drugs and vaccines, including those against COVID-19. Effective treatment of all conditions, including COVID-19, should be based on actual physiological need. Now, the flawed definition for children in the development of drugs and vaccines and their approval is negatively impacting prevention and treatment of COVID-19 in minors. This review reveals the necessity for redefining pediatric age groups to rapidly establish recommendations for optimal prevention and treatment in minors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5041/RMMJ.10433DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092959PMC
April 2021

Italian cohort of Lafora disease: Clinical features, disease evolution, and genotype-phenotype correlations.

J Neurol Sci 2021 May 20;424:117409. Epub 2021 Mar 20.

Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.

Background: Lafora disease (LD) is characterized by progressive myoclonus, refractory epilepsy, and cognitive deterioration. This complex neurodegenerative condition is caused by pathogenic variants in EPM2A/EPM2B genes, encoding two essential glycogen metabolism enzymes known as laforin and malin. Long-term follow-up data are lacking. We describe the clinical features and genetic findings of a cohort of 26 Italian patients with a long clinical follow-up.

Methods: Patients with EPM2A/EPM2B pathogenic variants were identified by direct gene sequencing or gene panels with targeted re-sequencing. Disease progression, motor functions, and mental performance were assessed by a simplified disability scale. Spontaneous/action myoclonus severity was scored by the Magaudda Scale.

Results: Age range was 12.2-46.2 years (mean:25.53 ± 9.14). Age at disease onset ranged from 10 to 22 years (mean:14.04 ± 2.62). The mean follow-up period was 11.48 ± 7.8 years. Twelve out of the 26 (46%) patients preserved walking ability and 13 (50%) maintained speech. A slower disease progression with preserved ambulation and speech after ≥4 years of follow-up was observed in 1 (11%) out of the 9 (35%) EPM2A patients and in 6 (35%) out of the 17 (65%) EPM2B patients. Follow-up was >10 years in 7 (41.2%) EPM2B individuals, including two harbouring the homozygous p.(D146N) pathogenic variant.

Conclusions: This study supports an overall worse disease outcome with severe deterioration of ambulation and speech in patients carrying EPM2A mutations. However, the delayed onset of disabling symptoms observed in the EPM2B subjects harbouring the p.(D146N) pathogenic variant suggests that the underlying causative variant may still influence LD severity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2021.117409DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166462PMC
May 2021

Gut-microbiota-directed strategies to treat epilepsy: clinical and experimental evidence.

Seizure 2021 Mar 13. Epub 2021 Mar 13.

Pediatric Neurology and Muscular Diseases Unit, "G. Gaslini" Institute, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy. Electronic address:

A growing appreciation that the intestinal microbiota might exert changes on the central nervous system via the gut-brain has emerged as a new research frontier in neurological disorders. Moreover, new approaches for studying and manipulating the gut microbiome, including metabolomics and faecal microbiota transplantation, have highlighted the tremendous potential that microbes have on neuroinflammation, metabolic, and neuroendocrine signaling pathways. Despite the large proliferation of studies in animal models examining the linkage between microbial disequilibrium and epilepsy, intestinal profiles at a functional level in humans have remained scarce. We reviewed the scientific evidence on gut microbiota's role in epilepsy, both in clinical and experimental studies, to better understand how targeting the gut microbiota could serve as a diagnostic or prognostic research tool. Likewise, translating microbial molecular mechanisms to medical settings could fill the gaps related to alternative therapies for patients with epilepsy, mainly in cases with refractory phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.seizure.2021.03.009DOI Listing
March 2021

Highly Purified Cannabidiol for Epilepsy Treatment: A Systematic Review of Epileptic Conditions Beyond Dravet Syndrome and Lennox-Gastaut Syndrome.

CNS Drugs 2021 Mar 22;35(3):265-281. Epub 2021 Mar 22.

Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy.

Background: Cannabidiol (CBD), which is one major constituent of the Cannabis sativa plant, has anti-seizure properties and does not produce euphoric or intrusive side effects. A plant-derived, highly purified CBD formulation with a known and constant composition has been approved by the US Food and Drug Administration for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex. In the European Union, the drug has been authorized by the European Medicines Agency for the treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome, in conjunction with clobazam, and is under regulatory review for the treatment of seizures in patients with tuberous sclerosis complex.

Objectives: This systematic review aimed to summarize the currently available body of knowledge about the use of this US Food and Drug Administration/European Medicines Agency-approved oral formulation of pharmaceutical-grade CBD in patients with epileptic conditions, especially developmental and epileptic encephalopathies other than Dravet syndrome and Lennox-Gastaut syndrome.

Methods: The relevant studies were identified through MEDLINE and the US National Institutes of Health Clinical Trials Registry in October 2020. There were no date limitations or language restrictions. The following types of studies were included: clinical trials, cohorts, case-control, cross-sectional, clinical series, and case reports. Participants had to meet the following criteria: any sex, any ethnicity, any age, diagnosis of epilepsy, receiving plant-derived, highly purified (> 98% w/w) CBD in a sesame oil-based oral solution for the treatment of seizures. Data extracted from selected records included efficacy, tolerability, and safety outcomes.

Results: Five hundred and seventy records were identified by database and trial register searching. Fifty-seven studies were retrieved for detailed assessment, of which 42 were eventually included for the review. The participants of the studies included patients of both pediatric and adult age. Across the trials, purified CBD was administered at dosages up to 50 mg/kg/day. In a randomized double-blind controlled trial in patients with tuberous sclerosis complex, CBD was associated with a significantly greater percent reduction in seizure frequency than placebo over the treatment period. Open-label studies suggested the effectiveness of CBD in the treatment of children and adults presenting with other epilepsy syndromes than those addressed by regulatory trials, including CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes, SYNGAP1 encephalopathy, and epilepsy with myoclonic absences. The most common adverse events observed during treatment with CBD included somnolence, decreased appetite, diarrhea, and increased serum aminotransferases.

Conclusions: The currently available data suggest that response to treatment with a highly purified, plant-derived CBD oil-based solution can be seen in patients across a broad range of epilepsy disorders and etiologies. The existing evidence can provide preliminary support for additional research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40263-021-00807-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005394PMC
March 2021

Ganaxolone treatment for epilepsy patients: from pharmacology to place in therapy.

Expert Rev Neurother 2021 Mar 29:1-16. Epub 2021 Mar 29.

Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy.

: Nonsulfated neurosteroids can provide phasic and tonic inhibition through activation of synaptic and extra-synaptic γ-aminobutyric acid (GABA) receptors, exhibiting a greater potency for the latter. These actions occur by interacting with modulatory sites that are distinct from those bound by benzodiazepines and barbiturates. Ganaxolone (GNX) is a synthetic analog of the endogenous neurosteroid allopregnanolone and a member of a novel class of neuroactive steroids called epalons.: The authors review the pharmacology of GNX, summarize the main clinical evidence about its antiseizure efficacy and tolerability, and suggest implications for clinical practice and future research.: The clinical development of GNX is mainly oriented to target unmet needs and focused on status epilepticus and rare genetic epilepsies that have few or no treatment options.The availability of oral and intravenous formulations allows reaching adult and pediatric patients in acute and chronic care settings. Further evidence will complement the understanding of the potentialities of GNX and possibly lead to indications for use in clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14737175.2021.1904895DOI Listing
March 2021

The role of inflammatory mediators in epilepsy: Focus on developmental and epileptic encephalopathies and therapeutic implications.

Epilepsy Res 2021 May 18;172:106588. Epub 2021 Feb 18.

Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy.

In recent years, there has been an increasing interest in the potential involvement of neuroinflammation in the pathogenesis of epilepsy. Specifically, the role of innate immunity (that includes cytokines and chemokines) has been extensively investigated either in animal models of epilepsy and in clinical settings. Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of epileptic disorders, in which uncontrolled epileptic activity results in cognitive, motor and behavioral impairment. By definition, epilepsy in DEE is poorly controlled by common antiepileptic drugs but may respond to alternative treatments, including steroids and immunomodulatory drugs. In this review, we will focus on how cytokines and chemokines play a role in the pathogenesis of DEE and why expanding our knowledge about the role of neuroinflammation in DEE may be crucial to develop new and effective targeted therapeutic strategies to prevent seizure recurrence and developmental regression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2021.106588DOI Listing
May 2021

Genotype-phenotype correlations in patients with de novo pathogenic variants.

Neurol Genet 2020 Dec 30;6(6):e528. Epub 2020 Nov 30.

Department of Neurosciences (F. Malerba, G.B., E.A., A. Riva, V.S., L.N., C. Minetti, F.Z., P.S.), Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova; Pediatric Neurology and Muscular Diseases Unit (F. Malerba, G.B., F. Marchese, E.A., A. Riva, M.S.V., V.S., C. Minetti, P.S.), IRCCS Istituto G. Gaslini; Center for Synaptic Neuroscience and Technology ([email protected]) (G.A., L.M., F.B.), Istituto Italiano di Tecnologia; Department of Experimental Medicine (G.A.), Università degli Studi di Genova; Laboratory of Human Genetics (E.G.); Unit of Medical Genetics (F. Madia, F.Z.), IRCCS Istituto G. Gaslini, Genova, Italy; Child Neurology and Neurorehabilitation Unit (M.A.), Department of Pediatrics, Central Hospital of Bolzano, Bolzano; Child Neurology and Psychiatry Unit (L.G., P.A., P.M.), ASST Spedali Civili, Brescia; Neurology Unit (M. Trivisano, N.S.), Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Roma; Child Neurology Unit (A. Russo, G.G.), IRCCS, Institute of Neurological Sciences of Bologna; Child Neuropsychiatry Unit (F.R.), U.O.N.P.I.A. ASST-Rhodense, Rho, Milano; Neurology Unit and Laboratories (T.P.), A. Meyer Children's Hospital, Firenze; Child Neurology and Psychiatric Unit (C. Marini), Pediatric Hospital G. Salesi, United Hospital of Ancona; Child Neuropsychiatry Unit (M.M.M., L.N.), IRCCS Istituto G. Gaslini, Genova; Department of Pediatric Neuroscience (E.F.), Fondazione IRCCS Istituto Neurologico Carlo Besta; Unit of Genetics of Neurodegenerative and Metabolic Diseases (B. Castellotti), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano; Department of Child Neuropsychiatry (G.C.), Epilepsy Center, C. Poma Hospital, Mantova; Fondazione Poliambulanza Brescia (G.C.); Epilepsy Center (A.C.), Department of Neuroscience, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Napoli; Department of Pediatrics (A.V.), University of Perugia; Section of Pharmacology (F. Miceli, M. Taglialatela), Department of Neuroscience, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Napoli; IRCCS Ospedale Policlinico San Martino (L.M., F.B.), Genova, Italy; Division of Pediatric Neurology (M.R.C.), Saint-Luc University Hospital, and Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium; Department of Epilepsy Genetics and Personalized Treatment (K.M.J., R.S.M.), The Danish Epilepsy Center Filadelfia, Dianalund, Denmark; Institute for Regional Health Services (K.M.J., R.S.M.), University of Southern Denmark, Odense, Denmark; Department of Neurology (B. Ceulemans, S.W.), University Hospital Antwerp; Applied & Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; and Department of Life and Environmental Sciences (L.M.), Polytechnic University of Marche, Ancona, Italy.

Objective: Early identification of de novo variants in patients with epilepsy raises prognostic issues toward optimal management. We analyzed the clinical and genetic information from a cohort of patients with de novo pathogenic variants to dissect genotype-phenotype correlations.

Methods: Patients with de novo pathogenic variants were identified from Italy, Denmark, and Belgium. Atomic resolution Kv7.2 structures were also generated using homology modeling to map the variants.

Results: We included 34 patients with a mean age of 4.7 years. Median seizure onset was 2 days, mainly with focal seizures with autonomic signs. Twenty-two patients (65%) were seizure free at the mean age of 1.2 years. More than half of the patients (17/32) displayed severe/profound intellectual disability; however, 4 (13%) of them had a normal cognitive outcome.A total of 28 de novo pathogenic variants were identified, most missense (25/28), and clustered in conserved regions of the protein; 6 variants recurred, and 7 were novel. We did not identify a relationship between variant position and seizure offset or cognitive outcome in patients harboring missense variants. Besides, recurrent variants were associated with overlapping epilepsy features but also variable evolution regarding the intellectual outcome.

Conclusions: We highlight the complexity of variant interpretation to assess the impact of a class of de novo mutations. Genetic modifiers could be implicated, but the study paradigms to successfully address the impact of each single mutation need to be developed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000528DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803337PMC
December 2020

Chromosome 15q BP4-BP5 Deletion in a Girl with Nocturnal Frontal Lobe Epilepsy, Migraine, Circumscribed Hypertrichosis, and Language Impairment.

J Epilepsy Res 2020 Dec 31;10(2):84-91. Epub 2020 Dec 31.

Unit of Neonatology University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy.

The 15q13.3 microdeletion (microdel15q13.3) syndrome (OMIM 612001) has been reported in healthy subjects as well as in individuals with a wide spectrum of clinical manifestations ranging from mild to severe neurological disorders, including developmental delay/intellectual disability, autism spectrum disorder, schizophrenia, epilepsy, behavioral problems and speech dysfunction. This study explored the link between this genomic rearrangement and nocturnal frontal lobe epilepsy (NFLE), which could improve the clinical interpretation. A clinical and genomic investigation was carried out on an 8-year-girl with a deletion flanking the breakpoints (BPs) 4 and 5 of 15q13.3 detected by array comparative genomic hybridization analysis, affected by NFLE, migraine with aura, minor facial features, mild cognitive and language impairment, and circumscribed hypertrichosis. Literature survey of clinical studies was included. Nine years follow-up have displayed a benign course of the epileptic disorder with a progressive reduction and disappearance of the epileptic seizures, mild improvement of cognitive and language skills, partial cutaneous hypertrichosis regression, but stable ongoing of migraine episodes. A likely relationship between the BP4-BP5 deletion and NFLE with other symptoms presented by the girl is discussed together with a review of the literature on phenotypic features in microdel15q13.3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14581/jer.20014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903043PMC
December 2020

CASK related disorder: Epilepsy and developmental outcome.

Eur J Paediatr Neurol 2021 Mar 19;31:61-69. Epub 2021 Feb 19.

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Child Neuropsychiatry, ASST Fatebenefratelli Sacco, Milano, Italy.

Objective: CASK pathogenic variants are associated with variable features, as intellectual disability, optic atrophy, brainstem/cerebellar hypoplasia, and epileptic encephalopathy. Few studies describe the electroclinical features of epilepsy in patients with CASK pathogenic variants and their relationship with developmental delay.

Methods: this national multicentre cohort included genetically confirmed patients with different CASK pathogenic variants. Our findings were compared with cohorts reported in the literature.

Results: we collected 34 patients (29 females) showing from moderate (4 patients) to severe (22) and profound (8) developmental delay; all showed pontine and cerebellar hypoplasia, all except three with microcephaly. Seventeen out of 34 patients (50%) suffered from epileptic seizures, including spasms (11 patients, 32.3%), generalized (5) or focal seizures (1). In 8/17 individuals (47.1%), epilepsy started at or beyond the age of 24 months. Seven (3 males) out of the 11 children with spasms showed EEG features and a course supporting the diagnosis of a developmental and epileptic encephalopathy (DEE). Drug resistance was frequent in our cohort (52.9% of patients with epilepsy). EEG abnormalities included poorly organized background activity with diffuse or multifocal epileptiform abnormalities and sleep-activation, with possible appearance over the follow-up period. Developmental delay degree was not statistically different among patients with or without seizures but feeding difficulties were more frequent in patients with epilepsy.

Conclusions: epilepsy is a frequent comorbidity with a high incidence of spasms and drug resistance. Overall developmental disability does not seem to be more severe in the group of patients with epilepsy nor to be linked to specific epilepsy/EEG characteristics. A childhood onset of epilepsy is frequent, with possible worsening over time, so that serial and systematic monitoring is mandatory.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2021.02.006DOI Listing
March 2021

Comment on: A review of the experience with pediatric written requests issued for oncology drug products.

Pediatr Blood Cancer 2021 Feb 22:e28972. Epub 2021 Feb 22.

Department of Child, Adolescent & Developmental Neurology, University Children's Hospital, Ljubljana, Slovenia.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pbc.28972DOI Listing
February 2021