Publications by authors named "Parameswaran Vijayakumar"

6 Publications

  • Page 1 of 1

Cells Isolated from Regenerating Caudal Fin of Sparus aurata Can Differentiate into Distinct Bone Cell Lineages.

Mar Biotechnol (NY) 2020 Jun 20;22(3):333-347. Epub 2020 Feb 20.

Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.

Teleosts have the ability to regenerate their caudal fin upon amputation. A highly proliferative mass of undifferentiated cells called blastema forms beneath wound epidermis and differentiates to regenerate all missing parts of the fin. To date, the origin and fate of the blastema is not completely understood. However, current hypotheses suggest that the blastema is comprised of lineage-restricted dedifferentiated cells. To investigate the differentiation capacity of regenerating fin-derived cells, primary cultures were initiated from the explants of 2-days post-amputation (dpa) regenerates of juvenile gilthead seabream (Sparus aurata). These cells were subcultured for over 30 passages and were named as BSa2. After 10 passages they were characterized for their ability to differentiate towards different bone cell lineages and mineralize their extracellular matrix, through immunocytochemistry, histology, and RT-PCR. Exogenous DNA was efficiently delivered into these cells by nucleofection. Assessment of lineage-specific markers revealed that BSa2 cells were capable of osteo/chondroblastic differentiation. BSa2 cells were also found to be capable of osteoclastic differentiation, as demonstrated through TRAP-specific staining and pit resorption assay. Here, we describe the development of the first successful cell line viz., BSa2, from S. aurata 2-dpa regenerating caudal fins, which has the ability of multilineage differentiation and is capable of in vitro mineralization. The availability of such in vitro cell systems has the potential to stimulate research on the mechanisms of cell differentiation during fin regeneration and provide new insights into the mechanisms of bone formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-019-09937-3DOI Listing
June 2020

Susceptibility of betanodavirus in a newly established vertebra-derived cell line from Mosquitofish (Gambusia affinis).

J Fish Dis 2020 Feb 16;43(2):263-273. Epub 2019 Dec 16.

Centre for Ocean Research, Col. Dr Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, India.

In the present study, a new cell line from the vertebra of mosquitofish Gambusia affinis was successfully established and characterized. The cell line is named as bone Gambusia affinis (BGA) and subcultured for more than 55 passages in Leibovitz's/L15 medium supplemented with 15% FBS at 28°C. The cell line has a modal chromosome number of 48. Molecular characterization of the partial sequence of the coi gene confirmed the origin of the BGA cell line from mosquitofish. These cells exhibited epithelial morphology confirmed by the cytokeratin marker. The BGA cells showed mineralization of their extracellular matrix when stained with alizarin red and von Kossa stain. BGA cells were found to be susceptible to RGNNV and SJNNV strains of betanodavirus (NNV) showing cytopathic effect with multiple vacuolations in the cells. The RT-PCR confirmed the betanodavirus infections in BGA cells. The SEM micrograph showed the morphological changes observed in the cell during virus infection. The in vivo challenge experiment also showed the viral replicating efficiency in the Gambusia affinis with increasing viral titre. Thus, our present results show that the BGA cell line is a useful tool for isolating betanodavirus and could be used to investigate bone cell differentiation and extracellular matrix mineralization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfd.13127DOI Listing
February 2020

Central role of betaine-homocysteine S-methyltransferase 3 in chondral ossification and evidence for sub-functionalization in neoteleost fish.

Biochim Biophys Acta 2016 Jul 29;1860(7):1373-87. Epub 2016 Mar 29.

Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal. Electronic address:

Background: To better understand the complex mechanisms of bone formation it is fundamental that genes central to signaling/regulatory pathways and matrix formation are identified. Cell systems were used to analyze genes differentially expressed during extracellular matrix mineralization and bhmt3, coding for a betaine-homocysteine S-methyltransferase, was shown to be down-regulated in mineralizing gilthead seabream cells.

Methods: Levels and sites of bhmt3 expression were determined by qPCR and in situ hybridization throughout seabream development and in adult tissues. Transcriptional regulation of bhmt3 was assessed from the activity of promoter constructs controlling luciferase gene expression. Molecular phylogeny of vertebrate BHMT was determined from maximum likelihood analysis of available sequences.

Results: bhmt3 transcript is abundant in calcified tissues and localized in cartilaginous structures undergoing endo/perichondral ossification. Promoter activity is regulated by transcription factors involved in bone and cartilage development, further demonstrating the central role of Bhmt3 in chondrogenesis and/or osteogenesis. Molecular phylogeny revealed the explosive diversity of bhmt genes in neoteleost fish, while tissue distribution of bhmt genes in seabream suggested that neoteleostean Bhmt may have undergone several steps of sub-functionalization.

Conclusions: Data on bhmt3 gene expression and promoter activity evidences a novel function for betaine-homocysteine S-methyltransferase in bone and cartilage development, while phylogenetic analysis provides new insights into the evolution of vertebrate BHMTs and suggests that multiple gene duplication events occurred in neoteleost fish lineage.

General Significance: High and specific expression of Bhmt3 in gilthead seabream calcified tissues suggests that bone-specific betaine-homocysteine S-methyltransferases could represent a suitable marker of chondral ossification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2016.03.034DOI Listing
July 2016

Zebrafish vitamin K epoxide reductases: expression in vivo, along extracellular matrix mineralization and under phylloquinone and warfarin in vitro exposure.

Fish Physiol Biochem 2015 Jun 20;41(3):745-59. Epub 2015 Mar 20.

Centre of Marine Sciences (CCMAR), University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal,

Vitamin K (VK) acts as a cofactor driving the biological activation of VK-dependent proteins and conferring calcium-binding properties to them. As a result, VK is converted into VK epoxide, which must be recycled by VK epoxide reductases (Vkors) before it can be reused. Although VK has been shown to play a central role in fish development, particularly during skeletogenesis, pathways underlying VK actions are poorly understood, while good and reliable molecular markers for VK cycle/homeostasis are still lacking in fish. In the present work, expression of 2 zebrafish vkor genes was characterized along larval development and in adult tissues through qPCR analysis. Zebrafish cell line ZFB1 was used to evaluate in vitro regulation of vkors and other VK cycle-related genes during mineralization and upon 24 h exposure to 0.16 and 0.8 µM phylloquinone (VK1), 0.032 µM warfarin, or a combination of both molecules. Results showed that zebrafish vkors are differentially expressed during larval development, in adult tissues, and during cell differentiation/mineralization processes. Further, several VK cycle intermediates were differentially expressed in ZFB1 cells exposed to VK1 and/or warfarin. Present work provides data identifying different developmental stages and adult tissues where VK recycling is probably highly required, and shows how genes involved in VK cycle respond to VK nutritional status in skeletal cells. Expression of vkor genes can represent a reliable indicator to infer VK nutritional status in fish, while ZFB1 cells could represent a suitable in vitro tool to get insights into the mechanisms underlying VK action on fish bone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-015-0043-zDOI Listing
June 2015

Development of an in vitro cell system from zebrafish suitable to study bone cell differentiation and extracellular matrix mineralization.

Zebrafish 2013 Dec 2;10(4):500-9. Epub 2013 Aug 2.

1 Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve , Campus de Gambelas, Faro, Portugal .

Mechanisms of bone formation and skeletal development have been successfully investigated in zebrafish using a variety of in vivo approaches, but in vitro studies have been hindered due to a lack of homologous cell lines capable of producing an extracellular matrix (ECM) suitable for mineral deposition. Here we describe the development and characterization of a new cell line termed ZFB1, derived from zebrafish calcified tissues. ZFB1 cells have an epithelium-like phenotype, grow at 28°C in a regular L-15 medium supplemented with 15% of fetal bovine serum, and are maintained and manipulated using standard methods (e.g., trypsinization, cryopreservation, and transfection). They can therefore be propagated and maintained easily in most cell culture facilities. ZFB1 cells show aneuploidy with 2n=78 chromosomes, indicative of cell transformation. Furthermore, because DNA can be efficiently delivered into their intracellular space by nucleofection, ZFB1 cells are suitable for gene targeting approaches and for assessing gene promoter activity. ZFB1 cells can also differentiate toward osteoblast or chondroblast lineages, as demonstrated by expression of osteoblast- and chondrocyte-specific markers, they exhibit an alkaline phosphatase activity, a marker of bone formation in vivo, and they can mineralize their ECM. Therefore, they represent a valuable zebrafish-derived in vitro system for investigating bone cell differentiation and extracellular matrix mineralization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/zeb.2012.0833DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842872PMC
December 2013

ESSA1 embryonic stem like cells from gilthead seabream: a new tool to study mesenchymal cell lineage differentiation in fish.

Differentiation 2012 Oct 16;84(3):240-51. Epub 2012 Aug 16.

Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.

Embryonic stem (ES) cells are a promising tool for generation of transgenic animals and an ideal experimental model for in vitro studies of embryonic cell development, differentiation and gene manipulation. Here we report the development and initial characterization of a pluripotent embryonic stem like cell line, designated as ESSA1, derived from blastula stage embryos of the gilthead seabream (Sparus aurata, L). ESSA1 cells are cultured in Leibovitz's L-15 medium supplemented with 5% fetal bovine serum and, unlike other ES cells, without a feeder layer. They have a round or polygonal morphology, grow exponentially in culture and form dense colonies. ESSA1 cells also exhibit intense alkaline phosphatase activity, normal karyotype and are positive for stage-specific embryonic antigen-1 (SSEA1) and octamer-binding transcription factor 4 (Oct4) markers for up to 30 passages. Upon treatment with all-trans retinoic acid, ESSA1 cells differentiate into neuron-like, oligodendritic, myocyte and melanocyte cells; they can also form embryoid bodies when seeded in bacteriological plates, a characteristic usually associated with pluripotency. The capacity of ESSA1 cells to differentiate into osteoblastic, chondroblastic or osteoclastic cell lineages and to produce a mineralized extracellular matrix in vitro was demonstrated through histochemical techniques and further confirmed by immunocytochemistry using lineage-specific markers. Furthermore, ESSA1 cells can be used to produce chimera, where they contribute to the development of a variety of tissues including the trunk and gut of zebrafish embryos and fry. Thus, ESSA1 cells represent a promising model for investigating bone-lineage cell differentiation in fish and also highlight the potential of piscine stem cell research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diff.2012.07.004DOI Listing
October 2012