Publications by authors named "Paola Tarroni"

5 Publications

  • Page 1 of 1

The RESOLUTE consortium: unlocking SLC transporters for drug discovery.

Authors:
Giulio Superti-Furga Daniel Lackner Tabea Wiedmer Alvaro Ingles-Prieto Barbara Barbosa Enrico Girardi Ulrich Goldmann Bettina Gürtl Kristaps Klavins Christoph Klimek Sabrina Lindinger Eva Liñeiro-Retes André C Müller Svenja Onstein Gregor Redinger Daniela Reil Vitaly Sedlyarov Gernot Wolf Matthew Crawford Robert Everley David Hepworth Shenping Liu Stephen Noell Mary Piotrowski Robert Stanton Hui Zhang Salvatore Corallino Andrea Faedo Maria Insidioso Giovanna Maresca Loredana Redaelli Francesca Sassone Lia Scarabottolo Michela Stucchi Paola Tarroni Sara Tremolada Helena Batoulis Andreas Becker Eckhard Bender Yung-Ning Chang Alexander Ehrmann Anke Müller-Fahrnow Vera Pütter Diana Zindel Bradford Hamilton Martin Lenter Diana Santacruz Coralie Viollet Charles Whitehurst Kai Johnsson Philipp Leippe Birgit Baumgarten Lena Chang Yvonne Ibig Martin Pfeifer Jürgen Reinhardt Julian Schönbett Paul Selzer Klaus Seuwen Charles Bettembourg Bruno Biton Jörg Czech Hélène de Foucauld Michel Didier Thomas Licher Vincent Mikol Antje Pommereau Frédéric Puech Veeranagouda Yaligara Aled Edwards Brandon J Bongers Laura H Heitman Ad P IJzerman Huub J Sijben Gerard J P van Westen Justine Grixti Douglas B Kell Farah Mughal Neil Swainston Marina Wright-Muelas Tina Bohstedt Nicola Burgess-Brown Liz Carpenter Katharina Dürr Jesper Hansen Andreea Scacioc Giulia Banci Claire Colas Daniela Digles Gerhard Ecker Barbara Füzi Viktoria Gamsjäger Melanie Grandits Riccardo Martini Florentina Troger Patrick Altermatt Cédric Doucerain Franz Dürrenberger Vania Manolova Anna-Lena Steck Hanna Sundström Maria Wilhelm Claire M Steppan

Nat Rev Drug Discov 2020 07;19(7):429-430

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/d41573-020-00056-6DOI Listing
July 2020

P2X7 antagonists for CNS indications: recent patent disclosures.

Pharm Pat Anal 2017 Mar 1;6(2):61-76. Epub 2017 Mar 1.

Axxam Discovery Research, Via Castellino, 111, 80100 Napoli, Italy.

P2X7, a ligand-gated purinergic ion channel, has been at the center of intense efforts in the pharmaceutical industry in the last 15 years due to the growing appreciation of its role in inflammation. Since 2008-2009, increased focus on CNS available compounds has led to the publication of various patents on behalf of several pharmaceutical companies. This patent review aims at analyzing the recent patent literature (2008-2016) with a particular emphasis on those patents that are thought to deal with CNS penetrant compounds on the basis of their physicochemical features, the assays described in the patents and the uses these compounds are claimed for.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/ppa-2016-0044DOI Listing
March 2017

Ca(2+) release-activated Ca(2+) channel inhibitors.

Pharm Pat Anal 2014 Mar;3(2):171-82

Axxam Discovery Chemistry, Via Castellino, 111, 80100 Napoli, Italy.

Ca(2+) release-activated Ca(2+) (CRAC) channels are becoming important targets for therapeutic intervention in several areas of disease, including immunology, allergy and cancer. In parallel to the progression towards reliable methods for measuring CRAC currents and their inhibition, patents have been generated by several companies. In this Patent Review, an analysis of the patents in the CRAC channel inhibition filed is presented. A discussion of the biological methods used in the patents is included. The general interest in this area is growing fast with almost 80% of the patents issued after 2010.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/ppa.14.7DOI Listing
March 2014

Microarray analysis of 1,25(OH)₂D₃ regulated gene expression in human primary osteoblasts.

J Cell Biochem 2012 Feb;113(2):640-9

Axxam Spa, San Raffaele Biomedical Science Park, 20132 Milan, Italy.

Though extensive studies have been conducted, questions regarding the molecular effectors and pathways underlying the regulatory role of 1,25(OH)(2)D(3) in human osteoblasts other than cell differentiation and matrix protein production remain unanswered. This study aims to identify genes and pathways that are modulated by 1,25(OH)(2)D(3) treatment in human osteoblasts. Primary osteoblast cultures obtained from human bone tissue samples were treated with 1,25(OH)(2)D(3) (10(-7)  M) for 24 h and their transcritptomes were profiled by microarray analysis using the Affymetrix GeneChip. Statistical analysis was conducted to identify genes whose expression is significantly modulated following 1,25(OH)(2)D(3) treatment. One hundred and fifty-eight genes were found to be differentially expressed. Of these, 136 were upregulated, indicating clear transcriptional activation by 1,25(OH)(2)D(3). Biostatistical evaluation of microarray data by Ingenuity Pathways Analysis (IPA) revealed a relevant modulation of genes involved in vitamin D metabolism (CYP24), immune functions (CD14), neurotransmitter transporters (SLC1A1, SLC22A3), and coagulation [thrombomodulin (THBD), tissue plasminogen activator (PLAT), endothelial protein C receptor (PROCR), thrombin receptor (F2R)]. We identified a restricted number of highly regulated genes and confirmed their differential expression by real-time quantitative PCR (RT qPCR). The present genome-wide microarray analysis on 1,25(OH)(2)D(3) -treated human osteoblasts reveals an interplay of critical regulatory and metabolic pathways and supports the hypothesis that 1,25(OH)(2)D(3) can modulate the coagulation process through osteoblasts, activates osteoclastogenesis through inflammation signaling, modulates the effects of monoamines by affecting their reuptake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.23392DOI Listing
February 2012

The GeneTrawler: mapping potential drug targets in human and rat tissues.

Expert Opin Ther Targets 2007 Apr;11(4):567-80

Axxam, San Raffaele Biomedical Science Park, Via Olgettina 58, 20132 Milan, Italy.

Expression data are an important element of target identification and validation. The authors have established an automated high-throughput method based on real time quantitative polymerase chain reaction, called the GeneTrawler, for the characterization of pharmaceutical targets on an annotated collection of human tissues. The authors have conducted a variability analysis of the system, which demonstrates that the majority of the variability between expression levels determined is due to biologic variation between samples, rather than technical variation due to imprecision of the method. Gene expression maps, generated with this carefully controlled system provide a large, reliable, consistent data set. The authors have used this system to characterize the expression of > 100 genes, and here they show the expression profile of SUR1 in order to illustrate its use. The authors were able to confirm SUR1 expression in the lung, which was suggested on the basis of pharmacologic experiments but has not previously been confirmed by mRNA detection. The data also show SUR1 expression in tissues that have been associated with some of the side effects seen with SUR1 modulators. This and other examples demonstrate that the GeneTrawler is useful to gauge the suitability of a prospective therapeutic target, to fully exploit a known drug target, or to identify and help validate new hypothetical druggable targets to fuel drug discovery pipelines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1517/14728222.11.4.567DOI Listing
April 2007