Publications by authors named "Paola Lo Surdo"

35 Publications

4CMenB vaccine induces elite cross-protective human antibodies that compete with human factor H for binding to meningococcal fHbp.

PLoS Pathog 2020 10 2;16(10):e1008882. Epub 2020 Oct 2.

GSK, Siena, Italy.

Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e. 4CMenB and MenB-fHbp). Both vaccines contain the Factor H Binding Protein (fHbp) antigen, which can bind the Human Factor H (fH), the main negative regulator of the alternative complement pathway, thus enabling bacterial survival in the blood. fHbp is present in meningococcal strains as three main variants which are immunologically distinct. Here we sought to obtain detailed information about the epitopes targeted by anti-fHbp antibodies induced by immunization with the 4CMenB multicomponent vaccine. Thirteen anti-fHbp human monoclonal antibodies (mAbs) were identified in a library of over 100 antibody fragments (Fabs) obtained from three healthy adult volunteers immunized with 4CMenB. Herein, the key cross-reactive mAbs were further characterized for antigen binding affinity, complement-mediated serum bactericidal activity (SBA) and the ability to inhibit binding of fH to live bacteria. For the first time, we identified a subset of anti-fHbp mAbs able to elicit human SBA against strains with all three variants and able to compete with human fH for fHbp binding. We present the crystal structure of fHbp v1.1 complexed with human antibody 4B3. The structure, combined with mutagenesis and binding studies, revealed the critical cross-reactive epitope. The structure also provided the molecular basis of competition for fH binding. These data suggest that the fH binding site on fHbp v1.1 can be accessible to the human immune system upon immunization, enabling elicitation of human mAbs broadly protective against MenB. The novel structural, biochemical and functional data are of great significance because the human vaccine-elicited mAbs are the first reported to inhibit the binding of fH to fHbp, and are bactericidal with human complement. Our studies provide molecular insights into the human immune response to the 4CMenB meningococcal vaccine and fuel the rationale for combined structural, immunological and functional studies when seeking deeper understanding of the mechanisms of action of human vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1008882DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556464PMC
October 2020

Synergic complement-mediated bactericidal activity of monoclonal antibodies with distinct specificity.

FASEB J 2020 08 17;34(8):10329-10341. Epub 2020 Jun 17.

GSK, Siena, Italy.

The classical complement pathway is triggered when antigen-bound immunoglobulins bind to C1q through their Fc region. While C1q binds to a single Fc with low affinity, a higher avidity stable binding of two or more of C1q globular heads initiates the downstream reactions of the complement cascade ultimately resulting in bacteriolysis. Synergistic bactericidal activity has been demonstrated when monoclonal antibodies recognize nonoverlapping epitopes of the same antigen. The aim of the present work was to investigate the synergistic effect between antibodies directed toward different antigens. To this purpose, we investigated the bactericidal activity induced by combinations of monoclonal antibodies (mAbs) raised against factor H-binding protein (fHbp) and Neisserial Heparin-Binding Antigen (NHBA), two major antigens included in Bexsero, the vaccine against Meningococcus B, for prevention from this devastating disease in infants and adolescents. Collectively, our results show that mAbs recognizing different antigens can synergistically activate complement even when each single Mab is not bactericidal, reinforcing the evidence that cooperative immunity induced by antigen combinations can represent a remarkable added value of multicomponent vaccines. Our study also shows that the synergistic effect of antibodies is modulated by the nature of the respective epitopes, as well as by the antigen density on the bacterial cell surface.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201902795RDOI Listing
August 2020

Integration of high-throughput analytics and cell imaging enables direct early productivity and product quality assessment during Chinese Hamster ovary cell line development for a complex multi-subunit vaccine antigen.

Biotechnol Prog 2020 03 6;36(2):e2914. Epub 2019 Nov 6.

GSK, US Technical R&D, Drug Substance, Rockville, Maryland.

Mammalian cell line generation typically includes stable pool generation, single cell cloning and several rounds of clone selection based on cell growth, productivity and product quality criteria. Individual clone expansion and phenotype-based ranking is performed initially for hundreds or thousands of mini-scale cultures, representing the major operational challenge during cell line development. Automated cell culture and analytics systems have been developed to enable high complexity clone selection workflows; while ensuring traceability, safety, and quality of cell lines intended for biopharmaceutical applications. Here we show that comprehensive and quantitative assessment of cell growth, productivity, and product quality attributes are feasible at the 200-1,200 cell colony stage, within 14 days of the single cell cloning in static 96-well plate culture. The early cell line characterization performed prior to the clone expansion in suspension culture can be used for a single-step, direct selection of high quality clones. Such clones were comparable, both in terms of productivity and critical quality attributes (CQAs), to the top-ranked clones identified using an established iterative clone screening approach. Using a complex, multi-subunit antigen as a model protein, we observed stable CQA profiles independently of the cell culture format during the clonal expansion as well as in the batch and fed-batch processes. In conclusion, we propose an accelerated clone selection approach that can be readily incorporated into various cell line development workstreams, leading to significant reduction of the project timelines and resource requirements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2914DOI Listing
March 2020

Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.

FASEB J 2019 11 5;33(11):12099-12111. Epub 2019 Oct 5.

GlaxoSmithKline, Siena, Italy.

The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set ( = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs ( = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201900374RDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902690PMC
November 2019

NadA3 Structures Reveal Undecad Coiled Coils and LOX1 Binding Regions Competed by Meningococcus B Vaccine-Elicited Human Antibodies.

mBio 2018 10 16;9(5). Epub 2018 Oct 16.

GSK, Siena, Italy

serogroup B (MenB) is a major cause of sepsis and invasive meningococcal disease. A multicomponent vaccine, 4CMenB, is approved for protection against MenB. Neisserial adhesin A (NadA) is one of the main vaccine antigens, acts in host cell adhesion, and may influence colonization and invasion. Six major genetic variants of NadA exist and can be classified into immunologically distinct groups I and II. Knowledge of the crystal structure of the 4CMenB vaccine component NadA3 (group I) would improve understanding of its immunogenicity, folding, and functional properties and might aid antigen design. Here, X-ray crystallography, biochemical, and cellular studies were used to deeply characterize NadA3. The NadA3 crystal structure is reported; it revealed two unexpected regions of undecad coiled-coil motifs and other conformational differences from NadA5 (group II) not predicted by previous analyses. Structure-guided engineering was performed to increase NadA3 thermostability, and a second crystal structure confirmed the improved packing. Functional NadA3 residues mediating interactions with human receptor LOX-1 were identified. Also, for two protective vaccine-elicited human monoclonal antibodies (5D11, 12H11), we mapped key NadA3 epitopes. These vaccine-elicited human MAbs competed binding of NadA3 to LOX-1, suggesting their potential to inhibit host-pathogen colonizing interactions. The data presented provide a significant advance in the understanding of the structure, immunogenicity and function of NadA, one of the main antigens of the multicomponent meningococcus B vaccine. The bacterial microbe serogroup B (MenB) is a major cause of devastating meningococcal disease. An approved multicomponent vaccine, 4CMenB, protects against MenB. Neisserial adhesin A (NadA) is a key vaccine antigen and acts in host cell-pathogen interactions. We investigated the 4CMenB vaccine component NadA3 in order to improve the understanding of its immunogenicity, structure, and function and to aid antigen design. We report crystal structures of NadA3, revealing unexpected structural motifs, and other conformational differences from the NadA5 orthologue studied previously. We performed structure-based antigen design to engineer increased NadA3 thermostability. Functional NadA3 residues mediating interactions with the human receptor LOX-1 and vaccine-elicited human antibodies were identified. These antibodies competed binding of NadA3 to LOX-1, suggesting their potential to inhibit host-pathogen colonizing interactions. Our data provide a significant advance in the overall understanding of the 4CMenB vaccine antigen NadA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.01914-18DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191539PMC
October 2018

Non-Enzymatic and Site-Specific Glycan Shedding: A Novel Protein Degradation Pathway Observed in a Stabilized Form of RSV Prefusion F Protein.

Anal Chem 2018 09 7;90(18):10897-10902. Epub 2018 Sep 7.

Analytical R&D , Slaoui Center for Vaccines Research, GSK Vaccines , 14200 Shady Grove Road , Rockville , Maryland 20850 , United States.

Stability is one of the critical attributes of a protein-based therapeutic or vaccine product, which is directly linked to product quality and efficacy. Elucidating protein degradation pathways is required to obtain thorough understanding of the product and ensure degradation products are properly monitored. We observed a unique protein degradation involving nonenzyme catalyzed loss of a complete N-linked glycan under stress condition from an engineered respiratory syncytial virus (RSV) prefusion F protein (RSVPreF3). Investigations involving mass spectrometry, molecular modeling, and mutagenesis revealed that the glycan shedding was site-specific, dependent on structural elements, and required a glycine residue immediately following the site of glycosylation. The glycan loss did not negatively affect the binding between the main immunogenic epitope Site Ø and the neutralizing antibody D25. Further study indicated that the glycan shedding followed a similar but different mechanism than that of conventional deamidation. Since glycosylation is an important attribute for many recombinant therapeutic proteins or vaccine antigens, the finding from this study suggests the need to monitor this new type of degradation, especially when glycosylation has an impact on efficacy or safety.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b02402DOI Listing
September 2018

Structures of NHBA elucidate a broadly conserved epitope identified by a vaccine induced antibody.

PLoS One 2018 22;13(8):e0201922. Epub 2018 Aug 22.

GSK, Rockville, MD, United States of America.

Neisserial heparin binding antigen (NHBA) is one of three main recombinant protein antigens in 4CMenB, a vaccine for the prevention of invasive meningococcal disease caused by Neisseria meningitidis serogroup B. NHBA is a surface-exposed lipoprotein composed of a predicted disordered N-terminal region, an arginine-rich region that binds heparin, and a C-terminal domain that folds as an anti-parallel β-barrel and that upon release after cleavage by human proteases alters endothelial permeability. NHBA induces bactericidal antibodies in humans, and NHBA-specific antibodies elicited by the 4CMenB vaccine contribute to serum bactericidal activity, the correlate of protection. To better understand the structural bases of the human antibody response to 4CMenB vaccination and to inform antigen design, we used X-ray crystallography to elucidate the structures of two C-terminal fragments of NHBA, either alone or in complex with the Fab derived from the vaccine-elicited human monoclonal antibody 5H2, and the structure of the unbound Fab 5H2. The structures reveal details on the interaction between an N-terminal β-hairpin fragment and the β-barrel, and explain how NHBA is capable of generating cross-reactive antibodies through an extensive conserved conformational epitope that covers the entire C-terminal face of the β-barrel. By providing new structural information on a vaccine antigen and on the human immune response to vaccination, these results deepen our molecular understanding of 4CMenB, and might also aid future vaccine design projects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201922PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104945PMC
January 2019

Crystal structures of human Fabs targeting the Bexsero meningococcal vaccine antigen NHBA.

Acta Crystallogr F Struct Biol Commun 2017 06 11;73(Pt 6):305-314. Epub 2017 May 11.

GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy.

Neisserial heparin-binding antigen (NHBA) is a surface-exposed lipoprotein from Neisseria meningitidis and is a component of the meningococcus B vaccine Bexsero. As part of a study to characterize the three-dimensional structure of NHBA and the molecular basis of the human immune response to Bexsero, the crystal structures of two fragment antigen-binding domains (Fabs) isolated from human monoclonal antibodies targeting NHBA were determined. Through a high-resolution analysis of the organization and the amino-acid composition of the CDRs, these structures provide broad insights into the NHBA epitopes recognized by the human immune system. As expected, these Fabs also show remarkable structural conservation, as shown by a structural comparison of 15 structures of apo Fab 10C3 which were obtained from crystals grown in different crystallization conditions and were solved while searching for a complex with a bound NHBA fragment or epitope peptide. This study also provides indirect evidence for the intrinsically disordered nature of two N-terminal regions of NHBA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053230X17006021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458386PMC
June 2017

Neisseria meningitidis factor H-binding protein bound to monoclonal antibody JAR5: implications for antibody synergy.

Biochem J 2016 Dec 26;473(24):4699-4713. Epub 2016 Oct 26.

GSK Vaccines srl, Via Fiorentina 1, Siena 53100, Italy.

Factor H-binding protein (fHbp) is an important antigen of Neisseria meningitidis that is capable of eliciting a robust protective immune response in humans. Previous studies on the interactions of fHbp with antibodies revealed that some anti-fHbp monoclonal antibodies that are unable to trigger complement-mediated bacterial killing in vitro are highly co-operative and become bactericidal if used in combination. Several factors have been shown to influence such co-operativity, including IgG subclass and antigen density. To investigate the structural basis of the anti-fHbp antibody synergy, we determined the crystal structure of the complex between fHbp and the Fab (fragment antigen-binding) fragment of JAR5, a specific anti-fHbp murine monoclonal antibody known to be highly co-operative with other monoclonal antibodies. We show that JAR5 is highly synergic with monoclonal antibody (mAb) 12C1, whose structure in complex with fHbp has been previously solved. Structural analyses of the epitopes recognized by JAR5 and 12C1, and computational modeling of full-length IgG mAbs of JAR5 and 12C1 bound to the same fHbp molecule, provide insights into the spatial orientation of Fc (fragment crystallizable) regions and into the possible implications for the susceptibility of meningococci to complement-mediated killing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20160806DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398935PMC
December 2016

Exploring host-pathogen interactions through genome wide protein microarray analysis.

Sci Rep 2016 06 15;6:27996. Epub 2016 Jun 15.

GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy.

During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep27996DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908583PMC
June 2016

Molecular Basis of Ligand-Dependent Regulation of NadR, the Transcriptional Repressor of Meningococcal Virulence Factor NadA.

PLoS Pathog 2016 04 22;12(4):e1005557. Epub 2016 Apr 22.

GSK Vaccines Srl, Siena, Italy.

Neisseria adhesin A (NadA) is present on the meningococcal surface and contributes to adhesion to and invasion of human cells. NadA is also one of three recombinant antigens in the recently-approved Bexsero vaccine, which protects against serogroup B meningococcus. The amount of NadA on the bacterial surface is of direct relevance in the constant battle of host-pathogen interactions: it influences the ability of the pathogen to engage human cell surface-exposed receptors and, conversely, the bacterial susceptibility to the antibody-mediated immune response. It is therefore important to understand the mechanisms which regulate nadA expression levels, which are predominantly controlled by the transcriptional regulator NadR (Neisseria adhesin A Regulator) both in vitro and in vivo. NadR binds the nadA promoter and represses gene transcription. In the presence of 4-hydroxyphenylacetate (4-HPA), a catabolite present in human saliva both under physiological conditions and during bacterial infection, the binding of NadR to the nadA promoter is attenuated and nadA expression is induced. NadR also mediates ligand-dependent regulation of many other meningococcal genes, for example the highly-conserved multiple adhesin family (maf) genes, which encode proteins emerging with important roles in host-pathogen interactions, immune evasion and niche adaptation. To gain insights into the regulation of NadR mediated by 4-HPA, we combined structural, biochemical, and mutagenesis studies. In particular, two new crystal structures of ligand-free and ligand-bound NadR revealed (i) the molecular basis of 'conformational selection' by which a single molecule of 4-HPA binds and stabilizes dimeric NadR in a conformation unsuitable for DNA-binding, (ii) molecular explanations for the binding specificities of different hydroxyphenylacetate ligands, including 3Cl,4-HPA which is produced during inflammation, (iii) the presence of a leucine residue essential for dimerization and conserved in many MarR family proteins, and (iv) four residues (His7, Ser9, Asn11 and Phe25), which are involved in binding 4-HPA, and were confirmed in vitro to have key roles in the regulatory mechanism in bacteria. Overall, this study deepens our molecular understanding of the sophisticated regulatory mechanisms of the expression of nadA and other genes governed by NadR, dependent on interactions with niche-specific signal molecules that may play important roles during meningococcal pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1005557DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841544PMC
April 2016

Crystal structure of FhuD at 1.6 Å resolution: a ferrichrome-binding protein from the animal and human pathogen Staphylococcus pseudintermedius.

Acta Crystallogr F Struct Biol Commun 2016 Mar 19;72(Pt 3):214-9. Epub 2016 Feb 19.

Research Centre, GSK Vaccines Srl, Via Fiorentina 1, 53100 Siena, Italy.

Staphylococcus pseudintermedius is a leading cause of disease in dogs, and zoonosis causes human infections. Methicillin-resistant S. pseudintermedius strains are emerging, resembling the global health threat of S. aureus. Therefore, it is increasingly important to characterize potential targets for intervention against S. pseudintermedius. Here, FhuD, an S. pseudintermedius surface lipoprotein implicated in iron uptake, was characterized. It was found that FhuD bound ferrichrome in an iron-dependent manner, which increased the thermostability of FhuD by >15 °C. The crystal structure of ferrichrome-free FhuD was determined via molecular replacement at 1.6 Å resolution. FhuD exhibits the class III solute-binding protein (SBP) fold, with a ligand-binding cavity between the N- and C-terminal lobes, which is here occupied by a PEG molecule. The two lobes of FhuD were oriented in a closed conformation. These results provide the first detailed structural characterization of FhuD, a potential therapeutic target of S. pseudintermedius.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053230X16002272DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774880PMC
March 2016

Exploiting chimeric human antibodies to characterize a protective epitope of Neisseria adhesin A, one of the Bexsero vaccine components.

FASEB J 2016 Jan 24;30(1):93-101. Epub 2015 Aug 24.

Novartis Vaccines and Diagnostics, GlaxoSmithKline, Siena, Italy

Neisseria adhesin A (NadA) is one of the antigens of Bexsero, the recently licensed multicomponent vaccine against serogroup B Neisseria meningitidis (MenB). NadA belongs to the class of oligomeric coiled-coil adhesins and is able to mediate adhesion and invasion of human epithelial cells. As a vaccine antigen, NadA has been shown to induce high levels of bactericidal antibodies; however, the domains important for protective response are still unknown. In order to further investigate its immunogenic properties, we have characterized the murine IgG1 mAb (6E3) that was able to recognize the 2 main antigenic variants of NadA on the surface of MenB strains. The epitope targeted by mAb 6E3 was mapped by hydrogen-deuterium exchange mass spectrometry and shown to be located on the coiled-coil stalk region of NadA (aa 206-249). Although no serum bactericidal activity was observed for murine IgG1 mAb 6E3, functional activity was restored when using chimeric antibodies in which the variable regions of the murine mAb 6E3 were fused to human IgG3 constant regions, thus confirming the protective nature of the mAb 6E3 epitope. The use of chimeric antibody molecules will enable future investigations of complement-mediated antibody functionality independently of the Fc-mediated differences in complement activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.15-273813DOI Listing
January 2016

Molecular Engineering of Ghfp, the Gonococcal Orthologue of Neisseria meningitidis Factor H Binding Protein.

Clin Vaccine Immunol 2015 Jul 6;22(7):769-77. Epub 2015 May 6.

Novartis Vaccines Srl, a GSK Company, Siena, Italy

Knowledge of the sequences and structures of proteins produced by microbial pathogens is continuously increasing. Besides offering the possibility of unraveling the mechanisms of pathogenesis at the molecular level, structural information provides new tools for vaccine development, such as the opportunity to improve viral and bacterial vaccine candidates by rational design. Structure-based rational design of antigens can optimize the epitope repertoire in terms of accessibility, stability, and variability. In the present study, we used epitope mapping information on the well-characterized antigen of Neisseria meningitidis factor H binding protein (fHbp) to engineer its gonococcal homologue, Ghfp. Meningococcal fHbp is typically classified in three distinct antigenic variants. We introduced epitopes of fHbp variant 1 onto the surface of Ghfp, which is naturally able to protect against meningococcal strains expressing fHbp of variants 2 and 3. Heterologous epitopes were successfully transplanted, as engineered Ghfp induced functional antibodies against all three fHbp variants. These results confirm that structural vaccinology represents a successful strategy for modulating immune responses, and it is a powerful tool for investigating the extension and localization of immunodominant epitopes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/CVI.00794-14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478525PMC
July 2015

Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody.

Proc Natl Acad Sci U S A 2014 Dec 17;111(48):17128-33. Epub 2014 Nov 17.

Novartis Vaccines, 53100 Siena, Italy; and.

Serogroup B Neisseria meningitidis (MenB) is a major cause of severe sepsis and invasive meningococcal disease, which is associated with 5-15% mortality and devastating long-term sequelae. Neisserial adhesin A (NadA), a trimeric autotransporter adhesin (TAA) that acts in adhesion to and invasion of host epithelial cells, is one of the three antigens discovered by genome mining that are part of the MenB vaccine that recently was approved by the European Medicines Agency. Here we present the crystal structure of NadA variant 5 at 2 Å resolution and transmission electron microscopy data for NadA variant 3 that is present in the vaccine. The two variants show similar overall topology with a novel TAA fold predominantly composed of trimeric coiled-coils with three protruding wing-like structures that create an unusual N-terminal head domain. Detailed mapping of the binding site of a bactericidal antibody by hydrogen/deuterium exchange MS shows that a protective conformational epitope is located in the head of NadA. These results provide information that is important for elucidating the biological function and vaccine efficacy of NadA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1419686111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260552PMC
December 2014

Apo, Zn2+-bound and Mn2+-bound structures reveal ligand-binding properties of SitA from the pathogen Staphylococcus pseudintermedius.

Biosci Rep 2014 Nov 24;34(6):e00154. Epub 2014 Nov 24.

*Novartis Vaccines and Diagnostics srl, Via Fiorentina 1, 53100 Siena, Italy.

The Gram-positive bacterium Staphylococcus pseudintermedius is a leading cause of canine bacterial pyoderma, resulting in worldwide morbidity in dogs. S. pseudintermedius also causes life-threatening human infections. Furthermore, methicillin-resistant S. pseudintermedius is emerging, resembling the human health threat of methicillin-resistant Staphylococcus aureus. Therefore it is increasingly important to characterize targets for intervention strategies to counteract S. pseudintermedius infections. Here we used biophysical methods, mutagenesis, and X-ray crystallography, to define the ligand-binding properties and structure of SitA, an S. pseudintermedius surface lipoprotein. SitA was strongly and specifically stabilized by Mn2+ and Zn2+ ions. Crystal structures of SitA complexed with Mn2+ and Zn2+ revealed a canonical class III solute-binding protein with the metal cation bound in a cavity between N- and C-terminal lobes. Unexpectedly, one crystal contained both apo- and holo-forms of SitA, revealing a large side-chain reorientation of His64, and associated structural differences accompanying ligand binding. Such conformational changes may regulate fruitful engagement of the cognate ABC (ATP-binding cassette) transporter system (SitBC) required for metal uptake. These results provide the first detailed characterization and mechanistic insights for a potential therapeutic target of the major canine pathogen S. pseudintermedius, and also shed light on homologous structures in related staphylococcal pathogens afflicting humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BSR20140088DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242081PMC
November 2014

Two cross-reactive monoclonal antibodies recognize overlapping epitopes on Neisseria meningitidis factor H binding protein but have different functional properties.

FASEB J 2014 Apr 26;28(4):1644-53. Epub 2013 Dec 26.

1Research Center, Novartis Vaccines and Diagnostics Srl, Via Fiorentina 1, 53100 Siena, Italy.

Factor H binding protein (fHbp) is one of the main antigens of the 4-component meningococcus B (4CMenB) multicomponent vaccine against disease caused by serogroup B Neisseria meningitidis (MenB). fHbp binds the complement down-regulating protein human factor H (hfH), thus resulting in immune evasion. fHbp exists in 3 variant groups with limited cross-protective responses. Previous studies have described the generation of monoclonal antibodies (mAbs) targeting variant-specific regions of fHbp. Here we report for the first time the functional characterization of two mAbs that recognize a wide panel of fHbp variants and subvariants on the MenB surface and that are able to inhibit fHbp binding to hfH. The antigenic regions targeted by the two mAbs were accurately mapped by hydrogen-deuterium exchange mass spectrometry (HDX-MS), revealing partially overlapping epitopes on the N terminus of fHbp. Furthermore, while none of the mAbs had bactericidal activity on its own, a synergistic effect was observed for each of them when tested by the human complement serum bactericidal activity (hSBA) assay in combination with a second nonbactericidal mAb. The bases underlying fHbp variant cross-reactivity, as well as inhibition of hfH binding and cooperativity effect observed for the two mAbs, are discussed in light of the mapped epitopes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.13-239012DOI Listing
April 2014

Mining the bacterial unknown proteome: identification and characterization of a novel family of highly conserved protective antigens in Staphylococcus aureus.

Biochem J 2013 Nov;455(3):273-84

*Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy.

In the human pathogen Staphylococcus aureus, there exists an enormous diversity of proteins containing DUFs (domains of unknown function). In the present study, we characterized the family of conserved staphylococcal antigens (Csa) classified as DUF576 and taxonomically restricted to Staphylococci. The 18 Csa paralogues in S. aureus Newman are highly similar at the sequence level, yet were found to be expressed in multiple cellular locations. Extracellular Csa1A was shown to be post-translationally processed and released. Molecular interaction studies revealed that Csa1A interacts with other Csa paralogues, suggesting that these proteins are involved in the same cellular process. The structures of Csa1A and Csa1B were determined by X-ray crystallography, unveiling a peculiar structure with limited structural similarity to other known proteins. Our results provide the first detailed biological characterization of this family and confirm the uniqueness of this family also at the structural level. We also provide evidence that Csa family members elicit protective immunity in in vivo animal models of staphylococcal infections, indicating a possible important role for these proteins in S. aureus biology and pathogenesis. These findings identify the Csa family as new potential vaccine candidates, and underline the importance of mining the bacterial unknown proteome to identify new targets for preventive vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20130540DOI Listing
November 2013

EsiB, a novel pathogenic Escherichia coli secretory immunoglobulin A-binding protein impairing neutrophil activation.

mBio 2013 Jul 23;4(4). Epub 2013 Jul 23.

Novartis Vaccines and Diagnostics Srl, Siena, Italy.

Unlabelled: In this study, we have characterized the functional properties of a novel Escherichia coli antigen named EsiB (E. coli secretory immunoglobulin A-binding protein), recently reported to protect mice from sepsis. Gene distribution analysis of a panel of 267 strains representative of different E. coli pathotypes revealed that esiB is preferentially associated with extraintestinal strains, while the gene is rarely found in either intestinal or nonpathogenic strains. These findings were supported by the presence of anti-EsiB antibodies in the sera of patients affected by urinary tract infections (UTIs). By solving its crystal structure, we observed that EsiB adopts a superhelical fold composed of Sel1-like repeats (SLRs), a feature often associated with bacterial proteins possessing immunomodulatory functions. Indeed, we found that EsiB interacts with secretory immunoglobulin A (SIgA) through a specific motif identified by an immunocapturing approach. Functional assays showed that EsiB binding to SIgA is likely to interfere with productive FcαRI signaling, by inhibiting both SIgA-induced neutrophil chemotaxis and respiratory burst. Indeed, EsiB hampers SIgA-mediated signaling events by reducing the phosphorylation status of key signal-transducer cytosolic proteins, including mitogen-activated kinases. We propose that the interference with such immune events could contribute to the capacity of the bacterium to avoid clearance by neutrophils, as well as reducing the recruitment of immune cells to the infection site.

Importance: Pathogenic Escherichia coli infections have recently been exacerbated by increasing antibiotic resistance and the number of recurrent contagions. Attempts to develop preventive strategies against E. coli have not been successful, mainly due to the large antigenic and genetic variability of virulence factors, but also due to the complexity of the mechanisms used by the pathogen to evade the immune system. In this work, we elucidated the function of a recently discovered protective antigen, named EsiB, and described its capacity to interact with secretory immunoglobulin A (SIgA) and impair effector functions. This work unravels a novel strategy used by E. coli to subvert the host immune response and avoid neutrophil-dependent clearance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.00206-13DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735183PMC
July 2013

Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen.

Proc Natl Acad Sci U S A 2013 Feb 8;110(9):3304-9. Epub 2013 Feb 8.

Research Center, Novartis Vaccines and Diagnostics srl, 53100 Siena, Italy.

Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen-antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å(2) on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen-antibody interfaces are required to understand and design effective immunogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1222845110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587270PMC
February 2013

The factor H binding protein of Neisseria meningitidis interacts with xenosiderophores in vitro.

Biochemistry 2012 Nov 12;51(46):9384-93. Epub 2012 Nov 12.

Novartis Vaccines and Diagnostics, Via Fiorentina 1, Siena, Italy.

The factor H binding protein (fHbp) is a key virulence factor of Neisseria meningitidis that confers to the bacterium the ability to resist killing by human serum. The determination of its three-dimensional structure revealed that the carboxyl terminus of the protein folds into an eight-stranded β barrel. The structural similarity of this part of the protein to lipocalins provided the rationale for exploring the ability of fHbp to bind siderophores. We found that fHbp was able to bind in vitro siderophores belonging to the cathecolate family and mapped the interaction site by nuclear magnetic resonance. Our results indicated that the enterobactin binding site was distinct from the site involved in binding to human factor H and stimulates new hypotheses about possible multiple activities of fHbp.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi301161wDOI Listing
November 2012

Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2.

Biochem J 2013 Feb;449(3):683-93

Novartis Vaccines and Diagnostics srl, Via Fiorentina 1, 53100 Siena, Italy.

Staphylococcus aureus is a human pathogen causing globally significant morbidity and mortality. The development of antibiotic resistance in S. aureus highlights the need for a preventive vaccine. In the present paper we explore the structure and function of FhuD2 (ferric-hydroxamate uptake D2), a staphylococcal surface lipoprotein mediating iron uptake during invasive infection, recently described as a promising vaccine candidate. Differential scanning fluorimetry and calorimetry studies revealed that FhuD2 is stabilized by hydroxamate siderophores. The FhuD2-ferrichrome interaction was of nanomolar affinity in surface plasmon resonance experiments and fully iron(III)-dependent. We determined the X-ray crystallographic structure of ligand-bound FhuD2 at 1.9 Å (1 Å=0.1 nm) resolution, revealing the bilobate fold of class III SBPs (solute-binding proteins). The ligand, ferrichrome, occupies a cleft between the FhuD2 N- and C-terminal lobes. Many FhuD2-siderophore interactions enable the specific recognition of ferrichrome. Biochemical data suggest that FhuD2 does not undergo significant conformational changes upon siderophore binding, supporting the hypothesis that the ligand-bound complex is essential for receptor engagement and uptake. Finally, immunizations with FhuD2 alone or FhuD2 formulated with hydroxamate siderophores were equally protective in a murine staphylococcal infection model, confirming the suitability and efficacy of apo-FhuD2 as a protective antigen, and suggesting that other class III SBPs might also be exploited as vaccine candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20121426DOI Listing
February 2013

Immunization against proprotein convertase subtilisin-like/kexin type 9 lowers plasma LDL-cholesterol levels in mice.

J Lipid Res 2012 Aug 19;53(8):1654-61. Epub 2012 May 19.

Biotechnology Department, Istituto di Ricerche di Biologia Molecolare P. Angeletti, I-00040 Pomezia (Roma), Italy.

Successful development of drugs against novel targets crucially depends on reliable identification of the activity of the target gene product in vivo and a clear demonstration of its specific functional role for disease development. Here, we describe an immunological knockdown (IKD) method, a novel approach for the in vivo validation and functional study of endogenous gene products. This method relies on the ability to elicit a transient humoral response against the selected endogenous target protein. Anti-target antibodies specifically bind to the target protein and a fraction of them effectively neutralize its activity. We applied the IKD method to the in vivo validation of plasma PCSK9 as a potential target for the treatment of elevated levels of plasma LDL-cholesterol. We show that immunization with human-PCSK9 in mice is able to raise antibodies that cross-react and neutralize circulating mouse-PCSK9 protein thus resulting in increased liver LDL receptor levels and plasma cholesterol uptake. These findings closely resemble those described in PCSK9 knockout mice or in mice treated with antibodies that inhibit PCSK9 by preventing the PCSK9/LDLR interaction. Our data support the IKD approach as an effective method to the rapid validation of new target proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.M028340DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540849PMC
August 2012

Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197.

Proc Natl Acad Sci U S A 2012 Apr 19;109(14):5229-34. Epub 2012 Mar 19.

Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.

CRM197 is an enzymatically inactive and nontoxic form of diphtheria toxin that contains a single amino acid substitution (G52E). Being naturally nontoxic, CRM197 is an ideal carrier protein for conjugate vaccines against encapsulated bacteria and is currently used to vaccinate children globally against Haemophilus influenzae, pneumococcus, and meningococcus. To understand the molecular basis for lack of toxicity in CRM197, we determined the crystal structures of the full-length nucleotide-free CRM197 and of CRM197 in complex with the NAD hydrolysis product nicotinamide (NCA), both at 2.0-Å resolution. The structures show for the first time that the overall fold of CRM197 and DT are nearly identical and that the striking functional difference between the two proteins can be explained by a flexible active-site loop that covers the NAD binding pocket. We present the molecular basis for the increased flexibility of the active-site loop in CRM197 as unveiled by molecular dynamics simulations. These structural insights, combined with surface plasmon resonance, NAD hydrolysis, and differential scanning fluorimetry data, contribute to a comprehensive characterization of the vaccine carrier protein, CRM197.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1201964109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325714PMC
April 2012

Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH.

EMBO Rep 2011 Dec 1;12(12):1300-5. Epub 2011 Dec 1.

Department of Biochemistry and Molecular Biology, IRBM P. Angeletti, Via Pontina Km 30.600, Pomezia, Rome I-00040, Italy.

The protein PCSK9 (proprotein convertase subtilisin/kexin type 9) is a key regulator of low-density lipoprotein receptor (LDLR) levels and cardiovascular health. We have determined the crystal structure of LDLR bound to PCSK9 at neutral pH. The structure shows LDLR in a new extended conformation. The PCSK9 C-terminal domain is solvent exposed, enabling cofactor binding, whereas the catalytic domain and prodomain interact with LDLR epidermal growth factor(A) and β-propeller domains, respectively. Thus, PCSK9 seems to hold LDLR in an extended conformation and to interfere with conformational rearrangements required for LDLR recycling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/embor.2011.205DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245695PMC
December 2011

Rational design of a meningococcal antigen inducing broad protective immunity.

Sci Transl Med 2011 Jul;3(91):91ra62

Novartis Vaccines and Diagnostics S.r.l., Via Fiorentina 1, 53100 Siena, Italy.

The sequence variability of protective antigens is a major challenge to the development of vaccines. For Neisseria meningitidis, the bacterial pathogen that causes meningitis, the amino acid sequence of the protective antigen factor H binding protein (fHBP) has more than 300 variations. These sequence differences can be classified into three distinct groups of antigenic variants that do not induce cross-protective immunity. Our goal was to generate a single antigen that would induce immunity against all known sequence variants of N. meningitidis. To achieve this, we rationally designed, expressed, and purified 54 different mutants of fHBP and tested them in mice for the induction of protective immunity. We identified and determined the crystal structure of a lead chimeric antigen that was able to induce high levels of cross-protective antibodies in mice against all variant strains tested. The new fHBP antigen had a conserved backbone that carried an engineered surface containing specificities for all three variant groups. We demonstrate that the structure-based design of multiple immunodominant antigenic surfaces on a single protein scaffold is possible and represents an effective way to create broadly protective vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.3002234DOI Listing
July 2011

A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake.

J Biol Chem 2010 Apr 19;285(17):12882-91. Epub 2010 Feb 19.

Department of Cardiovascular Diseases, Merck Research Laboratories, Rahway, New Jersey 07065, USA.

PCSK9 binds to the low density lipoprotein receptor (LDLR) and leads to LDLR degradation and inhibition of plasma LDL cholesterol clearance. Consequently, the role of PCSK9 in modulating circulating LDL makes it a promising therapeutic target for treating hypercholesterolemia and coronary heart disease. Although the C-terminal domain of PCSK9 is not involved in LDLR binding, the location of several naturally occurring mutations within this region suggests that it has an important role for PCSK9 function. Using a phage display library, we identified an anti-PCSK9 Fab (fragment antigen binding), 1G08, with subnanomolar affinity for PCSK9. In an assay measuring LDL uptake in HEK293 and HepG2 cells, 1G08 Fab reduced 50% the PCSK9-dependent inhibitory effects on LDL uptake. Importantly, we found that 1G08 did not affect the PCSK9-LDLR interaction but inhibited the internalization of PCSK9 in these cells. Furthermore, proteolysis and site-directed mutagenesis studies demonstrated that 1G08 Fab binds a region of beta-strands encompassing Arg-549, Arg-580, Arg-582, Glu-607, Lys-609, and Glu-612 in the PCSK9 C-terminal domain. Consistent with these results, 1G08 fails to bind PCSK9DeltaC, a truncated form of PCSK9 lacking the C-terminal domain. Additional studies revealed that lack of the C-terminal domain compromised the ability of PCSK9 to internalize into cells, and to inhibit LDL uptake. Together, the present study demonstrate that the PCSK9 C-terminal domain contribute to its inhibition of LDLR function mainly through its role in the cellular uptake of PCSK9 and LDLR complex. 1G08 Fab represents a useful new tool for delineating the mechanism of PCSK9 uptake and LDLR degradation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M110.113035DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857140PMC
April 2010

Mass spectrometry study of PRL-3 phosphatase inactivation by disulfide bond formation and cysteine into glycine conversion.

Rapid Commun Mass Spectrom 2009 Sep;23(17):2733-40

IRBM P. Angeletti, Via Pontina km 30.600, 00040 Pomezia, Italy.

The Phosphatase of Regenerating Liver-3 (PRL-3) is a cysteine-based phosphatase (CBP) that is highly over-expressed in liver metastasis in colorectal cancer and suspected to be involved in the progression from tumor to metastasis. During substrate-specificity studies based on the screening of PRL-3 phosphatase activity on several phosphorylated synthetic peptides, we observed a decrease in activity depending on sample aging and storage conditions. By liquid chromatography combined with selective alkylation and mass spectrometry, we found two main PRL-3 inactivation pathways: a disulfide bond formation between the catalytic C104 and C49, blocking the enzyme in an inactive oxidized form, or the conversion of the catalytic C104 into glycine. We also found that the disulfide formation and the cysteine into glycine conversion are catalyzed by cations present in the sample after protein purification through a nickel column. By adding a cation chelator such as EDTA and de-oxygenating the sample with argon, PRL-3 phosphatase activity was preserved. These findings suggest that PRL-3, like other CBPs, is sensitive to inactivation by catalytic cysteine oxidation and this has implications for future studies of its activity and specificity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.4181DOI Listing
September 2009

Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants.

J Biol Chem 2009 Jan 10;284(2):1313-23. Epub 2008 Nov 10.

Department of Biochemistry, Istituto di Ricerca di Biologia Molecolare "P. Angeletti", Via Pontina Km 30.600, 00040 Pomezia (Rome), Italy.

PCSK9 regulates low density lipoprotein receptor (LDLR) levels and consequently is a target for the prevention of atherosclerosis and coronary heart disease. Here we studied the interaction, of LDLR EGF(A/AB) repeats with PCSK9. We show that PCSK9 binds the EGF(AB) repeats in a pH-dependent manner. Although the PCSK9 C-terminal domain is not involved in LDLR binding, PCSK9 autocleavage is required. Moreover, we report the x-ray structure of the PCSK9DeltaC-EGF(AB) complex at neutral pH. Compared with the low pH PCSK9-EGF(A) structure, the new structure revealed rearrangement of the EGF(A) His-306 side chain and disruption of the salt bridge with PCSK9 Asp-374, thus suggesting the basis for enhanced interaction at low pH. In addition, the structure of PCSK9DeltaC bound to EGF(AB)(H306Y), a mutant associated with familial hypercholesterolemia (FH), reveals that the Tyr-306 side chain forms a hydrogen bond with PCSK9 Asp-374, thus mimicking His-306 in the low pH conformation. Consistently, Tyr-306 confers increased affinity for PCSK9. Importantly, we found that although the EGF(AB)(H306Y)-PCSK9 interaction is pH-independent, LDLR(H306Y) binds PCSK9 50-fold better at low pH, suggesting that factors other than His-306 contribute to the pH dependence of PCSK9-LDLR binding. Further, we determined the structures of EGF(AB) bound to PCSK9DeltaC containing the FH-associated D374Y and D374H mutations, revealing additional interactions with EGF(A) mediated by Tyr-374/His-374 and providing a rationale for their disease phenotypes. Finally, we report the inhibitory properties of EGF repeats in a cellular assay measuring LDL uptake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M808363200DOI Listing
January 2009

Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain.

J Biol Chem 2008 Sep 8;283(39):26694-704. Epub 2008 Jul 8.

Istituto di Ricerche di Biologia Molecolare P. Angeletti, Merck Research Laboratories, Via Pontina Km 30.600, 00040 Pomezia (Roma), Italy.

Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M803514200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258910PMC
September 2008