Publications by authors named "Oscar A Alcober"

7 Publications

  • Page 1 of 1

Age constraints on the dispersal of dinosaurs in the Late Triassic from magnetochronology of the Los Colorados Formation (Argentina).

Proc Natl Acad Sci U S A 2014 Jun 19;111(22):7958-63. Epub 2014 May 19.

Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan 5400, Argentina.

A measured magnetozone sequence defined by 24 sampling sites with normal polarity and 28 sites with reverse polarity characteristic magnetizations was established for the heretofore poorly age-constrained Los Colorados Formation and its dinosaur-bearing vertebrate fauna in the Ischigualasto-Villa Union continental rift basin of Argentina. The polarity pattern in this ∼600-m-thick red-bed section can be correlated to Chrons E7r to E15n of the Newark astrochronological polarity time scale. This represents a time interval from 227 to 213 Ma, indicating that the Los Colorados Formation is predominantly Norian in age, ending more than 11 My before the onset of the Jurassic. The magnetochronology confirms that the underlying Ischigualasto Formation and its vertebrate assemblages including some of the earliest known dinosaurs are of Carnian age. The oldest dated occurrences of vertebrate assemblages with dinosaurs in North America (Chinle Formation) are younger (Norian), and thus the rise of dinosaurs was diachronous across the Americas. Paleogeography of the Ischigualasto and Los Colorados Formations indicates prolonged residence in the austral temperate humid belt where a provincial vertebrate fauna with early dinosaurs may have incubated. Faunal dispersal across the Pangean supercontinent in the development of more cosmopolitan vertebrate assemblages later in the Norian may have been in response to reduced contrasts between climate zones and lowered barriers resulting from decreasing atmospheric pCO2 levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1402369111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050597PMC
June 2014

Large-diameter burrows of the Triassic Ischigualasto Basin, NW Argentina: paleoecological and paleoenvironmental implications.

PLoS One 2012 5;7(12):e50662. Epub 2012 Dec 5.

Consejo Nacional de Investigaciones Científicas y Técnicas, San Juan, Argentina.

Large-diameter ichnofossils comprising three morphotypes have been identified in the Upper Triassic Ischigualasto and Los Colorados formations of northwestern Argentina. These burrows add to the global record of the early appearance of fossorial behavior during early Mesozoic time. Morphotypes 1 and 2 are characterized by a network of tunnels and shafts that can be assigned to tetrapod burrows given similarities with previously described forms. However, differences in diameter, overall morphology, and stratigraphic occurrence allow their independent classification. Morphotype 3 forms a complex network of straight branches that intersect at oblique angles. Their calcareous composition and surface morphology indicate these structures have a composite biogenic origin likely developed due to combined plant/animal interactions. The association of Morphotypes 1 and 2 with fluvial overbank lithologies deposited under an extremely seasonal arid climate confirms interpretations that the early appearance of burrowing behavior was employed by vertebrates in response to both temperature and moisture-stress associated with seasonally or perpetually dry Pangean paleoclimates. Comparisons of burrow morphology and biomechanical attributes of the abundant paleovertebrate fauna preserved in both formations permit interpretations regarding the possible burrow architects for Morphotypes 1 and 2. In the case of the Morphotype 1, the burrow constructor could be one of the small carnivorous cynodonts, Ecteninion or Probelesodon. Assigning an architect for Morphotype 2 is more problematic due to mismatches between the observed burrow morphology and the size of the known Los Colorados vertebrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050662PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515583PMC
May 2013

A new basal sauropodomorph (Dinosauria: Saurischia) from Quebrada del Barro Formation (Marayes-El Carrizal Basin), northwestern Argentina.

PLoS One 2011 9;6(11):e26964. Epub 2011 Nov 9.

Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina.

Background: Argentinean basal sauropodomorphs are known by several specimens from different basins; Ischigualasto, El Tranquilo, and Mogna. The Argentinean record is diverse and includes some of the most primitive known sauropodomorphs such as Panphagia and Chromogisaurus, as well as more derived forms, including several massospondylids. Until now, the Massospondylidae were the group of basal sauropodomorphs most widely spread around Pangea with a record in almost all continents, mostly from the southern hemisphere, including the only record from Antarctica.

Methodology/principal Finding: We describe here a new basal sauropodomorph, Leyesaurus marayensis gen. et sp. nov., from the Quebrada del Barro Formation, an Upper Triassic-Lower Jurassic unit that crops out in northwestern Argentina. The new taxon is represented by a partial articulated skeleton that includes the skull, vertebral column, scapular and pelvic girdles, and hindlimb. Leyesaurus is diagnosed by a set of unique features, such as a sharply acute angle (50 degrees) formed by the ascending process of the maxilla and the alveolar margin, a straight ascending process of the maxilla with a longitudinal ridge on its lateral surface, noticeably bulging labial side of the maxillary teeth, greatly elongated cervical vertebrae, and proximal articular surface of metatarsal III that is shelf-like and medially deflected. Phylogenetic analysis recovers Leyesaurus as a basal sauropodomorph, sister taxon of Adeopapposaurus within the Massospondylidae. Moreover, the results suggest that massospondylids achieved a higher diversity than previously thought.

Conclusions/significance: Our phylogenetic results differ with respect to previous analyses by rejecting the massospondylid affinities of some taxa from the northern hemisphere (e.g., Seitaad, Sarahsaurus). As a result, the new taxon Leyesaurus, coupled with other recent discoveries, suggests that the diversity of massospondylids in the southern hemisphere was higher than in other regions of Pangea. Finally, the close affinities of Leyesaurus with the Lower Jurassic Massospondylus suggest a younger age for the Quebrada del Barro Formation than previously postulated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026964PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212523PMC
April 2012

A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea.

Science 2011 Jan;331(6014):206-10

Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan 5400, Argentina.

Upper Triassic rocks in northwestern Argentina preserve the most complete record of dinosaurs before their rise to dominance in the Early Jurassic. Here, we describe a previously unidentified basal theropod, reassess its contemporary Eoraptor as a basal sauropodomorph, divide the faunal record of the Ischigualasto Formation with biozones, and bracket the formation with (40)Ar/(39)Ar ages. Some 230 million years ago in the Late Triassic (mid Carnian), the earliest dinosaurs were the dominant terrestrial carnivores and small herbivores in southwestern Pangaea. The extinction of nondinosaurian herbivores is sequential and is not linked to an increase in dinosaurian diversity, which weakens the predominant scenario for dinosaurian ascendancy as opportunistic replacement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1198467DOI Listing
January 2011

A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina.

Zookeys 2010 Oct 19(63):55-81. Epub 2010 Oct 19.

Museo de Ciencias Naturales, San Juan 5400, Argentina.

Herrerasauridae comprises a basal clade of dinosaurs best known from the Upper Triassic of Argentina and Brazil, which have yielded remains of Herrerasaurus ischigualastensis and Staurikosaurus pricei, respectively. Systematic opinion regarding the position of Herrerasauridae at the base of Dinosauria has varied. Here we describe a new herrerasaurid, Sanjuansaurus gordilloi gen. n., sp. n., based on a partial skeleton from Carnian-age strata of the the Upper Triassic Ischigualasto Formation of northwestern Argentina. The new taxon is diagnosed by numerous features, including long, band-shaped and posterolaterally oriented transverse process on the posterior cervical vertebrae; neural spines of the sixth to eighth dorsal vertebrae, at least, bearing acute anterior and posterior processes; scapula and coracoid with everted lateral margins of the glenoid; and short pubis (63% of the femoral length). Phylogenetic analysis placed Sanjuansaurus within a monophyletic Herrerasauridae, at the base of Theropoda and including Herrerasaurus and Staurikosaurus. The presence of Sanjuansaurus at the base of the Ischigualasto Formation, along with other dinosaurs such as Herrerasaurus, Eoraptor, Panphagia, and Chromogisaurus suggests that saurischian dinosaurs in southwestern Pangea were already widely diversified by the late Carnian rather than increasing in diversity across the Carnian-Norian boundary.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3897/zookeys.63.550DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088398PMC
October 2010

A basal sauropodomorph (Dinosauria: Saurischia) from the Ischigualasto Formation (Triassic, Carnian) and the early evolution of Sauropodomorpha.

PLoS One 2009 11;4(2):e4397. Epub 2009 Feb 11.

Museo de Ciencias Naturales, San Juan, Argentina.

Background: The earliest dinosaurs are from the early Late Triassic (Carnian) of South America. By the Carnian the main clades Saurischia and Ornithischia were already established, and the presence of the most primitive known sauropodomorph Saturnalia suggests also that Saurischia had already diverged into Theropoda and Sauropodomorpha. Knowledge of Carnian sauropodomorphs has been restricted to this single species.

Methodology/principal Findings: We describe a new small sauropodomorph dinosaur from the Ischigualsto Formation (Carnian) in northwest Argentina, Panphagia protos gen. et sp. nov., on the basis of a partial skeleton. The genus and species are characterized by an anteroposteriorly elongated fossa on the base of the anteroventral process of the nasal; wide lateral flange on the quadrate with a large foramen; deep groove on the lateral surface of the lower jaw surrounded by prominent dorsal and ventral ridges; bifurcated posteroventral process of the dentary; long retroarticular process transversally wider than the articular area for the quadrate; oval scars on the lateral surface of the posterior border of the centra of cervical vertebrae; distinct prominences on the neural arc of the anterior cervical vertebra; distal end of the scapular blade nearly three times wider than the neck; scapular blade with an expanded posterodistal corner; and medial lamina of brevis fossa twice as wide as the iliac spine.

Conclusions/significance: We regard Panphagia as the most basal sauropodomorph, which shares the following apomorphies with Saturnalia and more derived sauropodomorphs: basally constricted crowns; lanceolate crowns; teeth of the anterior quarter of the dentary higher than the others; and short posterolateral flange of distal tibia. The presence of Panphagia at the base of the early Carnian Ischigualasto Formation suggests an earlier origin of Sauropodomorpha during the Middle Triassic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004397PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635939PMC
April 2009

Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina.

PLoS One 2008 Sep 30;3(9):e3303. Epub 2008 Sep 30.

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA.

Background: Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence.

Methodology/principal Findings: We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia ("stomach ribs"), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax.

Conclusions/significance: We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I-Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II-Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract with compliant air sacs, in turn, suggests the presence of rigid, dorsally attached lungs with flow-through ventilation. (3) Phase III-Evolution of a primitive costosternal pump in maniraptoriform theropods before the close of the Jurassic. (4) Phase IV-Evolution of an advanced costosternal pump in maniraptoran theropods before the close of the Jurassic. In addition, we conclude: (5) The advent of avian unidirectional lung ventilation is not possible to pinpoint, as osteological correlates have yet to be identified for uni- or bidirectional lung ventilation. (6) The origin and evolution of avian air sacs may have been driven by one or more of the following three factors: flow-through lung ventilation, locomotory balance, and/or thermal regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003303PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553519PMC
September 2008