Publications by authors named "Orland Diez"

128 Publications

Clinical consequences of BRCA2 hypomorphism.

NPJ Breast Cancer 2021 Sep 9;7(1):117. Epub 2021 Sep 9.

Genome Instability and DNA repair Syndromes Group and Join Unit UAB-IR Sant Pau on Genomic Medicine, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

The tumor suppressor FANCD1/BRCA2 is crucial for DNA homologous recombination repair (HRR). BRCA2 biallelic pathogenic variants result in a severe form of Fanconi anemia (FA) syndrome, whereas monoallelic pathogenic variants cause mainly hereditary breast and ovarian cancer predisposition. For decades, the co-occurrence in trans with a clearly pathogenic variant led to assume that the other allele was benign. However, here we show a patient with biallelic BRCA2 (c.1813dup and c.7796 A > G) diagnosed at age 33 with FA after a hypertoxic reaction to chemotherapy during breast cancer treatment. After DNA damage, patient cells displayed intermediate chromosome fragility, reduced survival, cell cycle defects, and significantly decreased RAD51 foci formation. With a newly developed cell-based flow cytometric assay, we measured single BRCA2 allele contributions to HRR, and found that expression of the missense allele in a BRCA2 KO cellular background partially recovered HRR activity. Our data suggest that a hypomorphic BRCA2 allele retaining 37-54% of normal HRR function can prevent FA clinical phenotype, but not the early onset of breast cancer and severe hypersensitivity to chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-021-00322-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429460PMC
September 2021

Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores.

J Natl Cancer Inst 2021 Jul 28. Epub 2021 Jul 28.

Department of Molecular Medicine, University La Sapienza, Rome, Italy.

Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers.

Methods: 483 BRCA1 and 1,318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were three versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen-receptor (ER) negative (PRSER-) or ER-positive (PRSER+) breast cancer risk.

Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07-1.83) for BRCA1 and 1.33 (95% CI = 1.16-1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for both BRCA1 (OR = 1.73, 95% CI = 1.28-2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34-1.91) carriers. The estimated breast cancer ORs were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions.

Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and to inform clinical management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djab147DOI Listing
July 2021

Role of Splicing Regulatory Elements and In Silico Tools Usage in the Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian Cancer Genes.

Cancers (Basel) 2021 Jul 3;13(13). Epub 2021 Jul 3.

Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain.

The contribution of deep intronic splice-altering variants to hereditary breast and ovarian cancer (HBOC) is unknown. Current computational in silico tools to predict spliceogenic variants leading to pseudoexons have limited efficiency. We assessed the performance of the SpliceAI tool combined with ESRseq scores to identify spliceogenic deep intronic variants by affecting cryptic sites or splicing regulatory elements (SREs) using literature and experimental datasets. Our results with 233 published deep intronic variants showed that SpliceAI, with a 0.05 threshold, predicts spliceogenic deep intronic variants affecting cryptic splice sites, but is less effective in detecting those affecting SREs. Next, we characterized the SRE profiles using ESRseq, showing that pseudoexons are significantly enriched in SRE-enhancers compared to adjacent intronic regions. Although the combination of SpliceAI with ESRseq scores (considering ∆ESRseq and SRE landscape) showed higher sensitivity, the global performance did not improve because of the higher number of false positives. The combination of both tools was tested in a tumor RNA dataset with 207 intronic variants disrupting splicing, showing a sensitivity of 86%. Following the pipeline, five spliceogenic deep intronic variants were experimentally identified from 33 variants in HBOC genes. Overall, our results provide a framework to detect deep intronic variants disrupting splicing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13133341DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268271PMC
July 2021

BRCA1 and BRCA2 whole cDNA analysis in unsolved hereditary breast/ovarian cancer patients.

Cancer Genet 2021 Jun 18;258-259:10-17. Epub 2021 Jun 18.

Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain. Electronic address:

Germline pathogenic variants in BRCA1 and BRCA2 genes (BRCA1/2) explain an important fraction of hereditary breast/ovarian cancer (HBOC) cases. Genetic testing generally involves examining coding regions and exon/intron boundaries, thus the frequency of deleterious variants in non-coding regions is unknown. Here we analysed BRCA1/2 whole cDNA in a large cohort of 320 unsolved high-risk HBOC cases in order to identify potential splicing alterations explained by variants in BRCA1/2 deep intronic regions. Whole RNA splicing profiles were analysed by RT-PCR using Sanger sequencing or high-resolution electrophoresis in a QIAxcel instrument. Known predominant BRCA1/2 alternative splicing events were detected, together with two novel events BRCA1 ▼21 and BRCA2 Δ18q_27p. BRCA2 exon 3 skipping was detected in one patient (male) affected with breast cancer, caused by a known Portuguese founder mutation (c.156_157insAluYa5). An altered BRCA2 splicing pattern was detected in three patients, consisting in the up-regulation of ▼20A, Δ22 and ▼20A+Δ22 transcripts. In silico analysis and semi-quantitative data identified the polymorphism BRCA2 c.8755-66T>C as a potential modifier of Δ22 levels. Our findings suggest that mRNA alterations in BRCA1/2 caused by deep intronic variants are rare in Spanish population. However, RNA analysis complements DNA-based strategies allowing the identification of alterations that could go undetected by conventional testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cancergen.2021.06.003DOI Listing
June 2021

Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects.

NPJ Breast Cancer 2021 May 12;7(1):52. Epub 2021 May 12.

School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.

Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-021-00255-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115524PMC
May 2021

A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers.

Nat Commun 2021 02 17;12(1):1078. Epub 2021 Feb 17.

Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark.

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20496-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890067PMC
February 2021

Pathogenic Variants are Associated with Triple-Negative Breast Cancer in a Spanish Hereditary Breast and Ovarian Cancer Cohort.

Genes (Basel) 2021 01 23;12(2). Epub 2021 Jan 23.

Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, 08916 Badalona, Spain.

Only a small fraction of hereditary breast and/or ovarian cancer (HBOC) cases are caused by germline variants in the high-penetrance breast cancer 1 and 2 genes ( and . BRCA1-associated ring domain 1 (), nuclear partner of , has been suggested as a potential HBOC risk gene, although its prevalence and penetrance are variable according to populations and type of tumor. We aimed to investigate the prevalence of truncating variants in a cohort of patients with clinical suspicion of HBOC. A comprehensive screening by multigene panel analysis was performed in 4015 unrelated patients according to our regional guidelines for genetic testing in hereditary cancer. In addition, 51,202 Genome Aggregation Database (gnomAD) non-Finnish, non-cancer European individuals were used as a control population. In our patient cohort, we identified 19 patients with heterozygous truncating variants (0.47%), whereas the frequency observed in the gnomAD controls was 0.12%. We found a statistically significant association of truncating variants with overall risk (odds ratio (OR) = 3.78; CI = 2.10-6.48; = 1.16 × 10). This association remained significant in the hereditary breast cancer (HBC) group (OR = 4.18; CI = 2.10-7.70; = 5.45 × 10). Furthermore, deleterious variants were enriched among triple-negative BC patients (OR = 5.40; CI = 1.77-18.15; = 0.001) compared to other BC subtypes. Our results support the role of as a moderate penetrance BC predisposing gene and highlight a stronger association with triple-negative tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/genes12020150DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911518PMC
January 2021

A Collaborative Effort to Define Classification Criteria for ATM Variants in Hereditary Cancer Patients.

Clin Chem 2021 03;67(3):518-533

Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.

Background: Gene panel testing by massive parallel sequencing has increased the diagnostic yield but also the number of variants of uncertain significance. Clinical interpretation of genomic data requires expertise for each gene and disease. Heterozygous ATM pathogenic variants increase the risk of cancer, particularly breast cancer. For this reason, ATM is included in most hereditary cancer panels. It is a large gene, showing a high number of variants, most of them of uncertain significance. Hence, we initiated a collaborative effort to improve and standardize variant classification for the ATM gene.

Methods: Six independent laboratories collected information from 766 ATM variant carriers harboring 283 different variants. Data were submitted in a consensus template form, variant nomenclature and clinical information were curated, and monthly team conferences were established to review and adapt American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria to ATM, which were used to classify 50 representative variants.

Results: Amid 283 different variants, 99 appeared more than once, 35 had differences in classification among laboratories. Refinement of ACMG/AMP criteria to ATM involved specification for twenty-one criteria and adjustment of strength for fourteen others. Afterwards, 50 variants carried by 254 index cases were classified with the established framework resulting in a consensus classification for all of them and a reduction in the number of variants of uncertain significance from 58% to 42%.

Conclusions: Our results highlight the relevance of data sharing and data curation by multidisciplinary experts to achieve improved variant classification that will eventually improve clinical management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/clinchem/hvaa250DOI Listing
March 2021

Haplotype analysis of the internationally distributed BRCA1 c.3331_3334delCAAG founder mutation reveals a common ancestral origin in Iberia.

Breast Cancer Res 2020 10 21;22(1):108. Epub 2020 Oct 21.

Pontificia Universidad Católica de Chile, Santiago, Chile.

Background: The BRCA1 c.3331_3334delCAAG founder mutation has been reported in hereditary breast and ovarian cancer families from multiple Hispanic groups. We aimed to evaluate BRCA1 c.3331_3334delCAAG haplotype diversity in cases of European, African, and Latin American ancestry.

Methods: BC mutation carrier cases from Colombia (n = 32), Spain (n = 13), Portugal (n = 2), Chile (n = 10), Africa (n = 1), and Brazil (n = 2) were genotyped with the genome-wide single nucleotide polymorphism (SNP) arrays to evaluate haplotype diversity around BRCA1 c.3331_3334delCAAG. Additional Portuguese (n = 13) and Brazilian (n = 18) BC mutation carriers were genotyped for 15 informative SNPs surrounding BRCA1. Data were phased using SHAPEIT2, and identical by descent regions were determined using BEAGLE and GERMLINE. DMLE+ was used to date the mutation in Colombia and Iberia.

Results: The haplotype reconstruction revealed a shared 264.4-kb region among carriers from all six countries. The estimated mutation age was ~ 100 generations in Iberia and that it was introduced to South America early during the European colonization period.

Conclusions: Our results suggest that this mutation originated in Iberia and later introduced to Colombia and South America at the time of Spanish colonization during the early 1500s. We also found that the Colombian mutation carriers had higher European ancestry, at the BRCA1 gene harboring chromosome 17, than controls, which further supported the European origin of the mutation. Understanding founder mutations in diverse populations has implications in implementing cost-effective, ancestry-informed screening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13058-020-01341-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579869PMC
October 2020

Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants.

Genet Med 2020 10 15;22(10):1653-1666. Epub 2020 Jul 15.

Royal Devon & Exeter Hospital, Department of Clinical Genetics, Exeter, UK.

Purpose: We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers.

Methods: Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort.

Results: The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10) carriers. The associations in the prospective cohort were similar.

Conclusion: Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0862-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521995PMC
October 2020

Characterization of the Cancer Spectrum in Men With Germline BRCA1 and BRCA2 Pathogenic Variants: Results From the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).

JAMA Oncol 2020 08;6(8):1218-1230

Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Importance: The limited data on cancer phenotypes in men with germline BRCA1 and BRCA2 pathogenic variants (PVs) have hampered the development of evidence-based recommendations for early cancer detection and risk reduction in this population.

Objective: To compare the cancer spectrum and frequencies between male BRCA1 and BRCA2 PV carriers.

Design, Setting, And Participants: Retrospective cohort study of 6902 men, including 3651 BRCA1 and 3251 BRCA2 PV carriers, older than 18 years recruited from cancer genetics clinics from 1966 to 2017 by 53 study groups in 33 countries worldwide collaborating through the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Clinical data and pathologic characteristics were collected.

Main Outcomes And Measures: BRCA1/2 status was the outcome in a logistic regression, and cancer diagnoses were the independent predictors. All odds ratios (ORs) were adjusted for age, country of origin, and calendar year of the first interview.

Results: Among the 6902 men in the study (median [range] age, 51.6 [18-100] years), 1634 cancers were diagnosed in 1376 men (19.9%), the majority (922 of 1,376 [67%]) being BRCA2 PV carriers. Being affected by any cancer was associated with a higher probability of being a BRCA2, rather than a BRCA1, PV carrier (OR, 3.23; 95% CI, 2.81-3.70; P < .001), as well as developing 2 (OR, 7.97; 95% CI, 5.47-11.60; P < .001) and 3 (OR, 19.60; 95% CI, 4.64-82.89; P < .001) primary tumors. A higher frequency of breast (OR, 5.47; 95% CI, 4.06-7.37; P < .001) and prostate (OR, 1.39; 95% CI, 1.09-1.78; P = .008) cancers was associated with a higher probability of being a BRCA2 PV carrier. Among cancers other than breast and prostate, pancreatic cancer was associated with a higher probability (OR, 3.00; 95% CI, 1.55-5.81; P = .001) and colorectal cancer with a lower probability (OR, 0.47; 95% CI, 0.29-0.78; P = .003) of being a BRCA2 PV carrier.

Conclusions And Relevance: Significant differences in the cancer spectrum were observed in male BRCA2, compared with BRCA1, PV carriers. These data may inform future recommendations for surveillance of BRCA1/2-associated cancers and guide future prospective studies for estimating cancer risks in men with BRCA1/2 PVs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaoncol.2020.2134DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333177PMC
August 2020

Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses.

Nat Genet 2020 06 18;52(6):572-581. Epub 2020 May 18.

Molecular Medicine Unit, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.

Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0609-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808397PMC
June 2020

Transcriptome-wide association study of breast cancer risk by estrogen-receptor status.

Genet Epidemiol 2020 07 1;44(5):442-468. Epub 2020 Mar 1.

Department of Radiation Oncology, Hannover Medical School, Hannover, Germany.

Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22288DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987299PMC
July 2020

Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D.

J Natl Cancer Inst 2020 12;112(12):1242-1250

Department of Clinical Genetics Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Background: The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma (TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and RAD51D.

Methods: We analyzed data from 6178 families, 125 with pathogenic variants in RAD51C, and 6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and cumulative risks were estimated using complex segregation analysis to model the cancer inheritance patterns in families while adjusting for the mode of ascertainment of each family. All statistical tests were two-sided.

Results: Pathogenic variants in both RAD51C and RAD51D were associated with TOC (RAD51C: relative risk [RR] = 7.55, 95% confidence interval [CI] = 5.60 to 10.19; P = 5 × 10-40; RAD51D: RR = 7.60, 95% CI = 5.61 to 10.30; P = 5 × 10-39) and BC (RAD51C: RR = 1.99, 95% CI = 1.39 to 2.85; P = 1.55 × 10-4; RAD51D: RR = 1.83, 95% CI = 1.24 to 2.72; P = .002). For both RAD51C and RAD51D, there was a suggestion that the TOC relative risks increased with age until around age 60 years and decreased thereafter. The estimated cumulative risks of developing TOC to age 80 years were 11% (95% CI = 6% to 21%) for RAD51C and 13% (95% CI = 7% to 23%) for RAD51D pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 years were 21% (95% CI = 15% to 29%) for RAD51C and 20% (95% CI = 14% to 28%) for RAD51D pathogenic variant carriers. Both TOC and BC risks for RAD51C and RAD51D pathogenic variant carriers varied by cancer family history and could be as high as 32-36% for TOC, for carriers with two first-degree relatives diagnosed with TOC, or 44-46% for BC, for carriers with two first-degree relatives diagnosed with BC.

Conclusions: These estimates will facilitate the genetic counseling of RAD51C and RAD51D pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into cancer risk prediction models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735771PMC
December 2020

The Spectrum of Protein Truncating Variants in European Breast Cancer Cases.

Cancers (Basel) 2020 01 26;12(2). Epub 2020 Jan 26.

Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 12853, Czech Republic.

Germline protein truncating variants (PTVs) in the gene have been associated with a 2-4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with PTVs ascertained in 20 centers from 13 European countries. We identified 27 different PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique PTVs, 15 have not been previously reported. We provide here the initial spectrum of PTVs in European breast cancer cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12020292DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073216PMC
January 2020

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.

Nat Genet 2020 01 7;52(1):56-73. Epub 2020 Jan 7.

Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0537-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974400PMC
January 2020

Cancer Risks Associated With Germline Pathogenic Variants: An International Study of 524 Families.

J Clin Oncol 2020 03 16;38(7):674-685. Epub 2019 Dec 16.

Biopathologie, Centre Léon Bérard, Lyon, France.

Purpose: To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline pathogenic variants (PVs) because these risks have not been extensively characterized.

Methods: We analyzed data from 524 families with PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes.

Results: We found associations between PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; = 6.5 × 10), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; = 4.1 × 10), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; = 8.7 × 10), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; = 2.6 × 10). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age ( for trend = 2.0 × 10). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies ( for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer.

Conclusion: These results confirm as a major breast cancer susceptibility gene and establish substantial associations between germline PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of into risk prediction models and optimize the clinical cancer risk management of PV carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.19.01907DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049229PMC
March 2020

Association of Genomic Domains in and with Prostate Cancer Risk and Aggressiveness.

Cancer Res 2020 02 13;80(3):624-638. Epub 2019 Nov 13.

Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon, France.

Pathogenic sequence variants (PSV) in or () are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 and 171 male PSV carriers with prostate cancer, and 3,388 and 2,880 male PSV carriers without prostate cancer. PSVs in the 3' region of (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; = 0.0002). No genotype-phenotype associations were detected for PSVs in . These results demonstrate that specific PSVs may be associated with elevated risk of developing aggressive prostate cancer. SIGNIFICANCE: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-19-1840DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553241PMC
February 2020

The :p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

NPJ Breast Cancer 2019 1;5:38. Epub 2019 Nov 1.

25University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX USA.

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes , , , , and are associated with breast cancer risk. , which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants :p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of or . These three variants were also studied functionally by measuring survival and chromosome fragility in patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that :p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44,  = 0.034 and OR = 3.79;  = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for :p.Arg658* and found that also :p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96;  = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with :p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat -associated tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-019-0127-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825205PMC
November 2019

Recommendations for the elaboration of diagnostic genetic reports in the clinical setting.

Med Clin (Barc) 2019 10 5;153(7):293-297. Epub 2019 Aug 5.

Servicio de Bioquímica y Genética Molecular, CDB, Hospital Clínic, Barcelona, España.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medcli.2019.06.002DOI Listing
October 2019

Incorporation of semi-quantitative analysis of splicing alterations for the clinical interpretation of variants in BRCA1 and BRCA2 genes.

Hum Mutat 2019 12 26;40(12):2296-2317. Epub 2019 Aug 26.

Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

BRCA1 and BRCA2 (BRCA1/2) genetic variants that disrupt messenger RNA splicing are commonly associated with increased risks of developing breast/ovarian cancer. The majority of splicing studies published to date rely on qualitative methodologies (i.e., Sanger sequencing), but it is necessary to incorporate semi-quantitative or quantitative approaches to accurately interpret the clinical significance of spliceogenic variants. Here, we characterize the splicing impact of 31 BRCA1/2 variants using semi-quantitative capillary electrophoresis of fluorescent amplicons (CE), Sanger sequencing and allele-specific assays. A total of 14 variants were found to disrupt splicing. Allelic-specific assays could be performed for BRCA1 c.302-1G>A and BRCA2 c.516+2T>A, c.1909+1G>A, c.8332-13T>G, c.8332-2A>G, c.8954-2A>T variants, showing a monoallelic contribution to full-length transcript expression that was concordant with semi-quantitative data. The splicing fraction of alternative and aberrant transcripts was also measured by CE, facilitating variant interpretation. Following Evidence-based Network for the Interpretation of Germline Mutant Alleles criteria, we successfully classified eight variants as pathogenic (Class 5), five variants as likely pathogenic (Class 4), and 14 variants as benign (Class 1). We also provide splicing data for four variants classified as uncertain (Class 3), which produced a "leaky" splicing effect or introduced a missense change in the protein sequence, that will require further assessment to determine their clinical significance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23882DOI Listing
December 2019

Assessment of blind predictions of the clinical significance of BRCA1 and BRCA2 variants.

Hum Mutat 2019 09 23;40(9):1546-1556. Epub 2019 Aug 23.

Molecular Cancer Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia.

Testing for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has emerged as a standard clinical practice and is helping countless women better understand and manage their heritable risk of breast and ovarian cancer. Yet the increased rate of BRCA1/2 testing has led to an increasing number of Variants of Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the rate of clinical variant interpretation. Computational prediction is a key component of the variant interpretation pipeline. In the CAGI5 ENIGMA Challenge, six prediction teams submitted predictions on 326 newly-interpreted variants from the ENIGMA Consortium. By evaluating these predictions against the new interpretations, we have gained a number of insights on the state of the art of variant prediction and specific steps to further advance this state of the art.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23861DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744348PMC
September 2019

Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers.

Br J Cancer 2019 07 19;121(2):180-192. Epub 2019 Jun 19.

Department of Gynaecological Oncology, Chris O'Brien Lifehouse and The University of Sydney, Camperdown, NSW, Australia.

Background: Height and body mass index (BMI) are associated with higher ovarian cancer risk in the general population, but whether such associations exist among BRCA1/2 mutation carriers is unknown.

Methods: We applied a Mendelian randomisation approach to examine height/BMI with ovarian cancer risk using the Consortium of Investigators for the Modifiers of BRCA1/2 (CIMBA) data set, comprising 14,676 BRCA1 and 7912 BRCA2 mutation carriers, with 2923 ovarian cancer cases. We created a height genetic score (height-GS) using 586 height-associated variants and a BMI genetic score (BMI-GS) using 93 BMI-associated variants. Associations were assessed using weighted Cox models.

Results: Observed height was not associated with ovarian cancer risk (hazard ratio [HR]: 1.07 per 10-cm increase in height, 95% confidence interval [CI]: 0.94-1.23). Height-GS showed similar results (HR = 1.02, 95% CI: 0.85-1.23). Higher BMI was significantly associated with increased risk in premenopausal women with HR = 1.25 (95% CI: 1.06-1.48) and HR = 1.59 (95% CI: 1.08-2.33) per 5-kg/m increase in observed and genetically determined BMI, respectively. No association was found for postmenopausal women. Interaction between menopausal status and BMI was significant (P < 0.05).

Conclusion: Our observation of a positive association between BMI and ovarian cancer risk in premenopausal BRCA1/2 mutation carriers is consistent with findings in the general population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-019-0492-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738050PMC
July 2019

Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification.

Hum Mutat 2019 09;40(9):1557-1578

Institute of Human Genetics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany.

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23818DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772163PMC
September 2019

BRCA1- and BRCA2-specific in silico tools for variant interpretation in the CAGI 5 ENIGMA challenge.

Hum Mutat 2019 09 3;40(9):1593-1611. Epub 2019 Jul 3.

Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain.

BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these variants then becomes clinically relevant, because it may increase the survival rates of the carriers. Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants. In this article, we present a family of in silico predictors that address this problem, using a gene-specific approach. For each protein, we have developed two tools, aimed at predicting the impact of a variant at two different levels: Functional and clinical. Testing their performance in different datasets shows that specific information compensates the small number of predictive features and the reduced training sets employed to develop our models. When applied to the variants of the BRCA1/2 (ENIGMA) challenge in the fifth Critical Assessment of Genome Interpretation (CAGI 5) we find that these methods, particularly those predicting the functional impact of variants, have a good performance, identifying the large compositional bias towards neutral variants in the CAGI sample. This performance is further improved when incorporating to our prediction protocol estimates of the impact on splicing of the target variant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23802DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744361PMC
September 2019

Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer.

Nat Commun 2019 04 15;10(1):1741. Epub 2019 Apr 15.

Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040, Madrid, Spain.

Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-08053-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465407PMC
April 2019

Opportunistic testing of BRCA1, BRCA2 and mismatch repair genes improves the yield of phenotype driven hereditary cancer gene panels.

Int J Cancer 2019 11 15;145(10):2682-2691. Epub 2019 Apr 15.

High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona.

Multigene panels provide a powerful tool for analyzing several genes simultaneously. We evaluated the frequency of pathogenic variants (PV) in customized predefined panels according to clinical suspicion by phenotype and compared it to the yield obtained in the analysis of our clinical research gene panel. We also investigated mutational yield of opportunistic testing of BRCA1/2 and mismatch repair (MMR) genes in all patients. A total of 1,205 unrelated probands with clinical suspicion of hereditary cancer were screened for germline mutations using panel testing. Overall, 1,048 females and 157 males were analyzed, mean age at cancer diagnosis was 48; 883 had hereditary breast/ovarian cancer-suspicion, 205 hereditary nonpolyposis colorectal cancer (HNPCC)-suspicion, 73 adenomatous-polyposis-suspicion and 44 with other/multiple clinical criteria. At least one PV was found in 150 probands (12%) analyzed by our customized phenotype-driven panel. Tumoral MMR deficiency predicted for the presence of germline MMR gene mutations in patients with HNPCC-suspicion (46/136 vs. 0/56 in patients with and without MMR deficiency, respectively). Opportunistic testing additionally identified five MSH6, one BRCA1 and one BRCA2 carriers (0.6%). The analysis of the extended 24-gene panel provided 25 additional PVs (2%), including in 4 out of 51 individuals harboring MMR-proficient colorectal tumors (2 CHEK2 and 2 ATM). Phenotype-based panels provide a notable rate of PVs with clinical actionability. Opportunistic testing of MMR and BRCA genes leads to a significant straightforward identification of MSH6, BRCA1 and BRCA2 mutation carriers, and endorses the model of opportunistic testing of genes with clinical utility within a standard genetic counseling framework.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.32304DOI Listing
November 2019

Shared heritability and functional enrichment across six solid cancers.

Nat Commun 2019 01 25;10(1):431. Epub 2019 Jan 25.

Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.

Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r = 0.57, p = 4.6 × 10), breast and ovarian cancer (r = 0.24, p = 7 × 10), breast and lung cancer (r = 0.18, p =1.5 × 10) and breast and colorectal cancer (r = 0.15, p = 1.1 × 10). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-08054-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347624PMC
January 2019
-->