Publications by authors named "Omar Elakad"

5 Publications

  • Page 1 of 1

Low expression of CD24 is associated with poor survival in colorectal cancer.

Biochimie 2021 Oct 9. Epub 2021 Oct 9.

Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia. Electronic address:

In this study we analyzed expression of CD24 in a cohort of colorectal cancer patients using immunohistochemistry staining of CD24. We found a significant association between absence or low expression of CD24 (10% of membranous and 55% of cytoplasmic staining) and shortened patient survival. Protein localization played a crucial role in the prognosis: membranous form was the major and prognostic one in primary tumors, while cytoplasmic expression was elevated in liver metastases compared to the primary tumors and contained prognostic information. Then, using The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) RNA-seq data, we showed that CD24 mRNA level was two-fold decreased in primary colorectal cancers compared to adjacent normal mucosa. Like the protein staining data, ten percent of patients with the lowest mRNA expression levels of CD24 in primary tumors had reduced survival compared to the ones with higher expression. To explain these findings mechanistically, shRNA-mediated CD24 knockdown was performed in HT-29 colorectal cancer cells. It resulted in the increase of cell migration in vitro, no changes in proliferation and apoptosis, and a slight decrease in cell invasion. As increased cell migration is a hallmark of metastasis formation, this finding corroborates the association of a decreased CD24 expression with poor prognosis. Differential gene expression analysis revealed upregulation of genes involved in cell migration in the group of patients with low CD24 expression, including integrin subunit α3 and α3, β3 subunits of laminin 332. Further co-expression analysis identified SPI1, STAT1 and IRF1 transcription factors as putative master-regulators in this group.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2021.10.004DOI Listing
October 2021

One carbon metabolism in human lung cancer.

Transl Lung Cancer Res 2021 Jun;10(6):2523-2538

Institute of Pathology, University Medical Center, Göttingen, Germany.

Background: Lung cancer remains the major cause of cancer related death worldwide. The discovery of targeted therapies against activating mutations in genes like EGFR considerably improved the prognosis for a subgroup of patients but still leaves a large part without a targeted therapy. One carbon metabolism (1CM) has been investigated in several cancer entities and its increased activity has been linked to higher tumor aggressiveness and reduced prognosis. In spite of 1CM enzymes role and correlation to cancer cells progression, comprehensive analysis for the diagnostic and functional role of the complete 1CM enzymes in lung cancer has not been conducted so far.

Methods: We investigated the prognostic and functional relevance of five major 1CM factors (MTHFD2, PGDH3, SHMT2, MTHFD1 and TYMS) in the three major subclasses of lung cancer [pulmonary adenocarcinoma (AC), squamous cell lung cancer (SQCLC) and small cell lung cancer (SCLC)]. We analyzed 1CM enzymes expression and clinicopathological correlation in patient derived tissue samples of 103 AC, 183 SQCLC and 37 SCLC patients by immunohistochemistry. Furthermore, the effect of 1CM enzymes expression on lung cancer cell proliferation and the response to chemotherapy was investigated in 15 representative AC, SQCLC and SCLC cell lines.

Results: Expression of MTHFD2 and PGDH3 was significantly correlated to a worse overall survival only in AC patients. Cell proliferation assays resolved that all 1CM enzymes have a significant impact on cell growth in AC cell lines and are partially involved in cell proliferation in SQCLC and SCLC cell lines. In addition, expression of MTHFD2 correlated significantly with an increased pemetrexed chemoresistance.

Conclusions: Expression of MTHFD2 significantly reduces the prognosis of AC patients. Furthermore, MTHFD2 expression is crucial for survival of AC cell lines and its expression correlates with resistance against Pemetrexed. As MTHFD2 is almost not expressed in healthy adult tissue, we therefore suggest that the inhibition of MTHFD2 might be a potential therapeutic strategy to surround pemetrexed resistance in AC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21037/tlcr-20-1039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264328PMC
June 2021

Role of Annexin A1 in Squamous Cell Lung Cancer Progression.

Dis Markers 2021 17;2021:5520832. Epub 2021 Apr 17.

Institute of Pathology, University Medical Center, Göttingen, Germany.

Lung cancer remains the primary cause of cancer-related death worldwide, and its molecular mechanisms of tumor progression need further characterization to improve the clinical management of affected patients. The role of Annexin A1 (ANXA1) in tumorigenesis and cancer progression in general and especially in lung cancer remains to be controversial and seems to be highly tissue specific and inconsistent among tumor initiation, progression, and metastasis. In the current study, we investigated ANXA1 expression in 81 squamous cell lung cancer (SQCLC), 86 pulmonary adenocarcinoma (AC), and 30 small cell lung cancer (SCLC) patient-derived tissue samples and its prognostic impact on patient's survival. Mechanistically, we analyzed the impact of ANXA1 expression on proliferation and migration of SQCLC cell lines using CRISPR-Cas9 and mammalian overexpression vectors. Strong expression of ANXA1 was significantly correlated to longer overall survival only in SQCLC patients ( = 0.019). Overexpression of ANXA1 promoted proliferation in SQCLC cell lines but suppressed their migration, while knockout of ANXA1 promoted cell migration and suppressed proliferation. In conclusion, ANXA1 expression might elongate patients' survival by inhibiting tumor cell migration and subsequent metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2021/5520832DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075699PMC
April 2021

Fibroblast growth factor receptor 1 gene amplification and protein expression in human lung cancer.

Cancer Med 2020 05 24;9(10):3574-3583. Epub 2020 Mar 24.

Institute of Pathology, University Medical Center, Göttingen, Germany.

Background: Targeting fibroblast growth factor receptor 1 (FGFR1) is a potential treatment for squamous cell lung cancer (SQCLC). So far, treatment decision in clinical studies is based on gene amplification. However, only a minority of patients have shown durable response. Furthermore, former studies have revealed contrasting results regarding the impact of FGFR1 amplification and expression on patient's prognosis.

Aims: Here, we analyzed prevalence and correlation of FGFR1 gene amplification and protein expression in human lung cancer and their impact on overall survival. MATERIALS & METHODS: FGFR1 gene amplification and protein expression were analyzed by fluorescence in situ hybridization and immunohistochemistry (IHC) in 208 SQCLC and 45 small cell lung cancers (SCLC). Furthermore, FGFR1 protein expression was analyzed in 121 pulmonary adenocarcinomas (ACs). Amplification and expression were correlated to each other, clinicopathological characteristics, and overall survival.

Results: FGFR1 was amplified in 23% of SQCLC and 8% of SCLC. Amplification was correlated to males (P = .027) but not to overall survival. Specificity of immunostaining was verified by cellular CRISPR/Cas9 FGFR1 knockout. FGFR1 was strongly expressed in 9% of SQCLC, 35% of AC, and 4% of SCLC. Expression was correlated to females (P = .0187) and to the absence of lymph node metastasis in SQCLC (P = .018) with no significant correlation to overall survival. Interestingly, no significant correlation between amplification and expression was detected.

Discussion: FGFR1 gene amplification does not seem to correlate to protein expression.

Conclusion: We believe that patient selection for FGFR1 inhibitors in clinical studies should be reconsidered. Neither FGFR1 amplification nor expression influences patient's prognosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cam4.2994DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288860PMC
May 2020

Expression and prognostic impact of alpha thalassemia/mental retardation X-linked and death domain-associated protein in human lung cancer.

Medicine (Baltimore) 2019 Aug;98(31):e16712

Institute of Pathology.

Molecular characterization of lung cancer specimens after radical surgery offers additional prognostic information and may help to guide adjuvant therapeutic procedures. The transcriptional regulators alpha thalassemia/mental retardation X-linked (ATRX) and death domain-associated protein (DAXX) have recently been described in different cancer entities as a useful prognostic biomarker. This study was initiated to explore their protein expression patterns and prognostic value in patients with operable lung cancer disease.The protein abundance (in the following text also named protein expression) of ATRX and DAXX were analyzed by immunohistochemistry in 194 samples of squamous cell lung carcinoma (SQCLC), 111 samples of pulmonary adenocarcinoma (AC) and 40 samples of small cell lung cancer (SCLC). The protein levels of ATRX and DAXX were correlated with clinicopathological characteristics and patient outcome.ATRX showed strong protein expression in 16.2% of AC, 11.9% of SQCLC, and 42.5% of SCLC. DAXX was highly expressed in 54.9% of AC, 76.2% of SQCLC, and 82.5% of SCLC. Immunostaining of both ATRX and DAXX were seen in 14.4% of AC, 11.3% of SQCLC, and 42.5% of SCLC. High protein expression of ATRX was a favorable prognostic marker for patients with AC (hazard ratio 0.38, P = .02). Sub-group analyses showed a significant correlation between ATRX and the clinical stage of SQCLC and SCLC. Histological grading and ATRX were also significantly associated in cases of SQCLC.The presence of ATRX and DAXX are correlated with lung cancer histology. Strong ATRX protein expression is associated with a significantly longer overall survival in patients with AC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/MD.0000000000016712DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708616PMC
August 2019
-->