Publications by authors named "Olivier Tasseau"

12 Publications

  • Page 1 of 1

Boron Effect on Sugar-Based Organogelators.

Chemistry 2020 Nov 29;26(61):13927-13934. Epub 2020 Sep 29.

Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, Université de Rennes, 35000, Rennes, France.

The reaction of several alkylglucosides with phenyl boronic acid permitted easy access to a series of alkylglucoside phenyl boronate derivatives. This type of compound has structures similar to those of known benzylidene glucoside organogelators except for the presence of a boronate function in place of the acetal one. Low to very low concentrations of these amphiphilic molecules produced gelation of several organic solvents. The rheological properties of the corresponding soft materials characterized them as elastic solids. They were further characterized by SEM to obtain more information on their morphologies and by SAXS to determine the type of self-assembly involved within the gels. The sensitivity of the boronate function towards hydrolysis was also investigated. We demonstrated that a small amount of water (5 % v/v) was sufficient to disrupt the organogels leading to the original alkylglucoside and phenyl boronic acid; an important difference with the stable benzylidene-based organogelators. Such water-sensitive boronated organogelators could be suitable substances for the preparation of smart soft material for topical drug delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202001970DOI Listing
November 2020

6-Deoxy-6-fluoro galactofuranosides: regioselective glycosylation, unexpected reactivity, and anti-leishmanial activity.

Org Biomol Chem 2020 02;18(7):1462-1475

Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.

Selective glycosylation of the C-6 fluorinated galactofuranosyl acceptor 2 was studied with four galactofuranosyl donors. It was highlighted that this electron-withdrawing atom strongly impacted the behavior of the acceptor, thus leading to unprecedented glycosylation pathways. Competition between expected glycosylation of 2, ring expansion of this acceptor and furanosylation, and intermolecular aglycon transfer was observed. Further investigation of the fluorinated synthetic compounds showed that the presence of fluorine atom contributed to increase the inhibition of the growth of Leishmania tarentolae, a non-pathogenic strain of Leishmania.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9ob02596kDOI Listing
February 2020

Improvement of the versatility of an arabinofuranosidase against galactofuranose for the synthesis of galactofuranoconjugates.

Org Biomol Chem 2019 07;17(28):6799-6808

Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.

Galactofuranoconjugates are rare compounds with interesting biological properties. Their syntheses by traditional approaches are however tedious. Glycosidases are nowadays often used to simplify such syntheses but the use of galactofuranosidase has not been described yet for the synthesis of galactofuranoconjugates. Interestingly CtAraf51, an α-l-arabinofuranosidase from Ruminiclostridium thermocellum, is able to use aryl- or alkyl-β-d-galactofuranosides as the substrate but with very low efficiency. To allow its use as a synthesis tool, we decided to improve the efficiency of this enzyme toward these non-natural substrates. First, we identified three residues that can contribute to unfavorable interactions with the p-nitrophenyl-β-d-galactofuranoside. After mutagenesis, two mutants have shown a catalytic efficiency four- and threefold higher than that of the wild type, respectively. These two mutants were then evaluated in the transglycosylation reaction using ethanol as a model acceptor substrate. Under these conditions one mutant was much more efficient: 50% conversion was reached ten times faster than with the WT. Finally both mutants were converted into thioglycoligases: in the thioligation reaction, the reaction was two times faster than with the E173A single mutant, and in the acylation reaction a fourfold increase in the initial velocity was found. The synthetic potential of the resulting mutants to synthesize various O-, S- and acyl galactofuranoconjugates was further evaluated and yields up to 82% were obtained for the synthesis of ethyl- or thiophenyl galactofuranosides and methoxybenzoic galactofuranose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9ob01162eDOI Listing
July 2019

Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms.

J Org Chem 2017 07 28;82(14):7114-7122. Epub 2017 Jun 28.

Ecole Nationale Supérieure de Chimie de Rennes , CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.

Koenigs-Knorr glycosylation of acceptors with more than one free hydroxyl group by 2,3,5,6-tetrabenzoyl galactofuranosyl bromide was performed using diphenylborinic acid 2-aminoethyl ester (DPBA) as inducer of regioselectivity. High regioselectivity for the glycosylation on the equatorial hydroxyl group of the acceptor was obtained thanks to the transient formation of a borinate adduct of the corresponding 1,2-cis diol. Nevertheless formation of orthoester byproducts hampered the efficiency of the method. Interestingly electron-withdrawing groups on O-6 or on C-1 of the acceptor displaced the reaction in favor of the desired galactofuranosyl containing disaccharide. The best yield was obtained for the furanosylation of p-nitrophenyl 6-O-acetyl mannopyranoside. Precursors of other disaccharides, found in the glycocalix of some pathogens, were synthesized according to the same protocol with yields ranging from 45 to 86%. This is a good alternative for the synthesis of biologically relevant glycoconjugates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.7b00565DOI Listing
July 2017

A combination of in silico and SAR studies to identify binding hot spots of Bcl-xL inhibitors.

Bioorg Med Chem 2015 Apr 6;23(8):1747-57. Epub 2015 Mar 6.

Université de Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Avenue du Général Leclerc, 35042 Rennes Cedex, France.

Inhibition of Bcl-2 family protein-protein interactions (PPI) is a very promising direction in cancer chemotherapy. Hence over the last decade, many medicinal chemistry studies endeavoured to discover drug candidates, and a wealth of chemical scaffolds with striking chemical diversity was reported as Bcl-xL inhibitors. This raises the question of whether all these molecules could occupy a unique binding site, or rather discrete pockets of the protein surface. To test if small and chemically diverse Bcl-xL inhibitors are likely to bind a single pocket, and to identify which pocket, we used a battery of computational and modeling approaches. We first checked that the large dataset of Bcl-xL inhibitors we built can actually fit to a universal pharmacophore. Then we defined the probable binding hot spots of interaction through comparison of crystal structures, as well as virtual fragment screening. Finally, new analogues of small polyphenol derivatives were synthesized to precisely probe a hydrogen bond suggested by docking experiments. Bcl-xL inhibition potency of these products confirmed the predicted binding mode. This combination of X-ray structure exploration, molecular modeling studies and medicinal chemistry supports that all these small Bcl-xL inhibitors occupy the same hot spot of interaction. The identification of this binding site should help the design and optimization of small PPI Bcl-xL inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2015.02.060DOI Listing
April 2015

Synthesis of enones, pyrazolines and pyrrolines with gem-difluoroalkyl side chains.

Beilstein J Org Chem 2013 26;9:1943-8. Epub 2013 Sep 26.

Université de Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Avenue du Général Leclerc, 35042 Rennes Cedex, France ; Laboratory for Medicinal Chemistry and Natural Products, Lebanese University, Faculty of Sciences (1) and PRASE-EDST, Hadath, Beyrouth, Lebanon.

Starting from easily accessible gem-difluoropropargylic derivatives, a DBU-mediated isomerisation affords enones in fair yields with a gem-difluoroalkyl chain. These derivatives were used to prepare pyrazolines and pyrrolines with the desired gem-difluoroalkyl side chain by cyclocondensations in good yields and with excellent stereoselectivity. A one-pot process was also successfully developed for these sequential reactions. By carrying out various types of Pd-catalyzed coupling reactions for compounds with a p-bromophenyl substituent a route to focused chemical libraries was demonstrated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3762/bjoc.9.230DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817575PMC
November 2013

Hemisynthesis of selected embelin analogs and investigation of their proapoptotic activity against cancer cells.

Med Chem 2013 Dec;9(8):1028-34

Université de Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Avenue du Général Leclerc, 35042 Rennes Cedex, France.

Embelin is a natural product, inhibitor of XIAP (X-chromosome-linked Inhibitor of APoptosis) with strong proapoptotic properties on cancer cells. In order to clarify the role of two OH groups on benzoquinone core, we have prepared by hemisynthesis close analogs of embelin, where these OH groups have been replaced in a systematic manner by OMe and OAc groups. Proapoptotic activities of six embelin derivatives have been studied as single agent, or in combination with TRAIL, and their abilities to interact with XIAP have been evaluated by Surface Plasmon Biacore. Our results show that these new embelin analogs have good proapoptotic properties against selected cancer cells, often higher than the natural product itself. Further, this activity is not directly mediated by XIAP. Altogether these preliminary results demonstrate that for active embelin analogs, the two OH groups are not absolutely required for anticancer activity, opening new possibilities for the design of proapoptotic derivatives in these series.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406411309080003DOI Listing
December 2013

Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist.

J Med Chem 2012 Sep 17;55(17):7516-24. Epub 2012 Aug 17.

Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), INSERM U982, 76821 Mont-Saint-Aignan, France.

26RFa, a novel RFamide neuropeptide, is the endogenous ligand of the former orphan receptor GPR103. Intracerebroventricular injection of 26RFa and its C-terminal heptapeptide, 26RFa((20-26)), stimulates food intake in rodents. To develop potent, stable ligands of GPR103 with low molecular weight, we have designed a series of aza-β(3)-containing 26RFa((20-26)) analogues for their propensity to establish intramolecular hydrogen bonds, and we have evaluated their ability to increase [Ca(2+)](i) in GPR103-transfected cells. We have identified a compound, [Cmpi(21),aza-β(3)-Hht(23)]26RFa((21-26)), which was 8-fold more potent than 26RFa((20-26)) in mobilizing [Ca(2+)](i). This pseudopeptide was more stable in serum than 26RFa((20-26)) and exerted a longer lasting orexigenic effect in mice. This study constitutes an important step toward the development of 26RFa analogues that could prove useful for the treatment of feeding disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm300507dDOI Listing
September 2012

Anionic copper complex fragmentations from enkephalins under low-energy collision-induced dissociation in an ion trap mass spectrometer.

J Mass Spectrom 2004 Aug;39(8):903-12

Centre d'Etudes du Bouchet, BP 3, 91710 Vert le Petit, France.

Peptide metallation with Cu2+ was explored in the negative ESI mode using an ion trap mass spectrometer. Under these conditions, the [(M-3H) + CuII]- species formed were investigated under low-energy collision-induced dissociation conditions. MS2 experiments indicate a very different behavior of CuII metallated complexes compared with [M-H]- species. CuII induces an easy loss of CO2 and specific side-chain cleavages (by radical losses) at the C-terminal residue, as observed previously by prompt 'in source' dissociation experiments. The loss of CO2 yields an unstable carbylide that leads to further dissociations involving the migration of a proton or a hydrogen radical (through the reduction of CuII). Multistage MS3 experiments were carried out to rationalize this behavior. Fragmentation pathways are proposed in order to explain the product ions observed. The side-chain radical loss at the C-terminus was demonstrated to be a consecutive process. Finally, evidence is provided that the specific side-chain cleavages can be used for the differentiation of Leu/Ile and Gln/Lys residues when they are located at the C-terminus. The existence of a zwitterionic form in the case of the anionic YGGFK-CuII complex is proposed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.666DOI Listing
August 2004

Isotope and affinity tags in photoreactive substance P analogues to identify the covalent linkage within the NK-1 receptor by MALDI-TOF analysis.

Anal Chem 2003 Dec;75(23):6536-43

UMR 7613 CNRS-Université Pierre et Marie Curie, Structure et Fonction de Molécules Bioactives, case courrier 182, 4 Place Jussieu, 75252 Paris Cedex 05, France.

Photoreactive analogues of substance P (biotin sulfone-spacer (amino pentanoic or Gly(3))-Arg-Pro-Lys-Pro-(pBzl)Phe-Gln-Phe-Phe-Gly-Leu-Met(O(2))NH(2)) with or without isotope (deuterium) labeling have been synthesized. Deuteriums were present on (d)-biotin or epibiotin sulfone (D(3)), on the Gly(3) spacer linker (D(6)), or on the Gly in position 9 of SP (D(2)). Therefore, peptide analogues could be either unlabeled or tri-, penta-, or hexadeuterated. Results obtained with the use of these peptide analogues show that (d)-biotin sulfone and epibiotin sulfone are not recognized with the same affinity by streptavidin, with (d)-biotin sulfone displaying better affinity for the protein. Photolabeling of the human NK-1 receptor with a 1:1 molar ratio of nondeuterated and deuterated photoreactive substance P (SP) analogues in position 5, followed by combined digestions, purification, and MALDI-TOF mass spectrometry analysis, made the identification of the domain of the receptor covalently linked by the photoreactive SP analogue easier. Indeed, doublets in mass spectra were specific for the covalent complex whereas single peaks could be attributed to contaminating species. This method is particularly suitable when minute amounts of complex have to be analyzed, as in the case of highly hydrophobic G-protein coupled receptors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac034512iDOI Listing
December 2003

Electrospray mass spectrometric study of anionic complexes of enkephalins with Cu(II): regioselective distinction of Leu/Ile at the C-terminus induced by metal reduction.

Rapid Commun Mass Spectrom 2003 ;17(12):1229-1239

Laboratoire de Chimie Structurale Organique et Biologique, Université Paris VI, 4 place Jussieu, bâtiment F, 75252 Paris Cedex 05, France.

The yield of metallation of methionine-enkephalin and leucine-enkephalin isomers by copper(II) chloride was investigated by electrospray ionization ion trap mass spectrometry (ESI-ITMS) in negative ionization mode. Binary ([(M-3H)+Cu(II)](-)) and ternary ([(M-3H)+Cu(II)Cl](-)) complexes were observed. Soft and hard desolvation conditions (by changing the declustering voltage) were applied to study their influence on the metallation yield and on the observed deprotonated and metallated species. Structures of the binary complexes with defined charge locations are proposed, based on the observed in-source fragmentations. It was demonstrated that the in-source fragmentations under hard desolvation conditions could differentiate the Leu/Ile isomers if located at the C-terminal position but not at the N-terminal position. This behavior was also observed using a triple quadrupole analyzer. This facile distinction, due to a different radical loss from the [(M-3Hbond;CO(2))+Cu(II)](-) species (loss of [C(3)H(7)](.) for YGGFL and [C(2)H(5)](.) for YGGFI), was facilitated by the reduction of the oxidation state of Cu(II). This in-source differentiation of YGGFI and YGGFL was also implemented in LC/ESI-MS analysis by post-column addition of the copper salt with a syringe pump.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.1041DOI Listing
August 2003

Structural and biological effects of a beta2- or beta3-amino acid insertion in a peptide.

Eur J Biochem 2003 Mar;270(5):939-49

UMR 7613 CNRS-Paris 6, Université Pierre et Marie Curie, Paris, France.

Molecular mechanics calculations on conformers of Ac-HGly-NHMe, Ac-beta2-HAla-NHMe and Ac-beta3-HAla-NHMe indicate that low-energy conformations of the beta-amino acids backbone, corresponding to gauche rotamers around the Calpha-Cbeta bond, may overlap canonical backbone conformers observed for alpha-amino acids. Therefore, Substance P (SP) was used as a model peptide to analyse the structural and biological consequences of the substitution of Phe7 and Phe8 by (R)-beta2-HPhe and of Gly9 by HGly (R)-beta2-HAla or (S)-beta3-HAla. [(R)-beta2-HAla9]SP has pharmacological potency similar to that of SP while [HGly9]SP and [(S)-beta3-HAla9]SP show a 30- to 50-fold decrease in biological activities. The three analogues modified at position 9 are more resistant to degradation by angiotensin converting enzyme than SP and [Ala9]SP. NMR analysis of these SP analogues suggest that a beta-amino acid insertion in position 9 does not affect the overall backbone conformation. Altogether these data suggest that [HGly9]SP, [(S)-beta3-HAla9]SP and [(R)-beta2-HAla9]SP could adopt backbone conformations similar to that of SP, [Ala9]SP and [Pro9]SP. In contrast, incorporation of beta2-HPhe in position 7 and 8 of SP led to peptides that are almost devoid of biological activity. Thus, a beta-amino acid could replace an alpha-amino acid within the sequence of a bioactive peptide provided that the additional methylene group does not cause steric hindrance and does not confine orientations of the side chain to regions of space different from those permitted in the alpha-amino acid.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1033.2003.03456.xDOI Listing
March 2003