Publications by authors named "Olena A Kolesnichenko"

2 Publications

  • Page 1 of 1

Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases.

Am J Respir Cell Mol Biol 2021 Jul 22. Epub 2021 Jul 22.

Cincinnati Children's Hospital Medical Center, Pediatrics, Division of Pulmonary Biology, Cincinnati, Ohio, United States;

Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and anti-inflammatory drugs have improved clinical management of preterm infants, still those who suffer with severe vascular complications lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of ACDMPV infants. The discovery of endothelial progenitor cells (EPCs) in 1997 brought forth the paradigm of postnatal vasculogenesis and hope for promoting vascularization in fragile patient populations, such as those with BPD and ACDMPV. The identification of diverse EPC populations, both hematopoietic and nonhematopoietic in origin, provided a need to identify progenitor cell selective markers which are linked to progenitor properties needed to develop cell-based therapies. Focusing to the future potential of EPCs for regenerative medicine, this review will discuss various aspects of EPC biology, beginning with the identification of hematopoietic, nonhematopoietic, and tissue-resident EPC populations. We will review knowledge related to cell surface markers, signature gene expression, key transcriptional regulators, and will explore the translational potential of EPCs for cell-based therapy for BPD and ACDMPV. The ability to produce pulmonary EPCs from patient-derived induced pluripotent stem cells (iPSCs) in vitro, holds promise for restoring vascular growth and function in the lungs of patients with pediatric pulmonary disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2021

Nanoparticle Delivery of Proangiogenic Transcription Factors into the Neonatal Circulation Inhibits Alveolar Simplification Caused by Hyperoxia.

Am J Respir Crit Care Med 2020 07;202(1):100-111

Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.: Newborn mice were exposed to 75% O for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with or cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2020