Publications by authors named "Olaf Tyc"

20 Publications

  • Page 1 of 1

β-Arrestin2 is increased in liver fibrosis in humans and rodents.

Proc Natl Acad Sci U S A 2020 11;117(44):27082-27084

Section for Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt 60590, Germany;

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2014337117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959505PMC
November 2020

Microbiome Patterns in Matched Bile, Duodenal, Pancreatic Tumor Tissue, Drainage, and Stool Samples: Association with Preoperative Stenting and Postoperative Pancreatic Fistula Development.

J Clin Med 2020 Aug 28;9(9). Epub 2020 Aug 28.

Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany.

Postoperative complications after pancreatic surgery are still a significant problem in clinical practice. The aim of this study was to characterize and compare the microbiomes of different body compartments (bile duct, duodenal mucosa, pancreatic tumor lesion, postoperative drainage fluid, and stool samples; preoperative and postoperative) in patients undergoing pancreatic surgery for suspected pancreatic cancer, and their association with relevant clinical factors (stent placement, pancreatic fistula, and gland texture). For this, solid (duodenal mucosa, pancreatic tumor tissue, stool) and liquid (bile, drainage fluid) biopsy samples of 10 patients were analyzed using 16s rRNA gene next-generation sequencing. Our analysis revealed: (i) a distinct microbiome in the different compartments, (ii) markedly higher abundance of in patients undergoing preoperative stent placement in the common bile duct, (iii) significant differences in the beta diversity between patients who developed a postoperative pancreatic fistula (POPF B/C), (iv) patients with POPF B/C were more likely to have bacteria belonging to the genus , and (v) differences in microbiome composition with regard to the pancreatic gland texture. The structure of the microbiome is distinctive in different compartments, and can be associated with the development of a postoperative pancreatic fistula.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jcm9092785DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563524PMC
August 2020

The Role of Macrophage-Inducible C-Type Lectin in Different Stages of Chronic Liver Disease.

Front Immunol 2020 7;11:1352. Epub 2020 Jul 7.

Department of Internal Medicine I, University Hospital, Goethe University, Frankfurt, Germany.

The macrophage-inducible C-type lectin (mincle) is part of the innate immune system and acts as a pattern recognition receptor for pathogen-associated molecular patterns (PAMPS) and damage-associated molecular patterns (DAMPs). Ligand binding induces mincle activation which consequently interacts with the signaling adapter Fc receptor, SYK, and NF-kappa-B. There is also evidence that mincle expressed on macrophages promotes intestinal barrier integrity. However, little is known about the role of mincle in hepatic fibrosis, especially in more advanced disease stages. Mincle expression was measured in human liver samples from cirrhotic patients and donors collected at liver transplantation and in patients undergoing bariatric surgery. Human results were confirmed in rodent models of cirrhosis and acute-on-chronic liver failure (ACLF). In these models, the role of mincle was investigated in liver samples as well as in peripheral blood monocytes (PBMC), tissues from the kidney, spleen, small intestine, and heart. Additionally, mincle activation was stimulated in experimental non-alcoholic steatohepatitis (NASH) by treatment with mincle agonist trehalose-6,6-dibehenate (TDB). In human NASH, mincle is upregulated with increased collagen production. In ApoE deficient mice fed high-fat western diet (NASH model), mincle activation significantly increases hepatic collagen production. In human cirrhosis, mincle expression is also significantly upregulated. Furthermore, mincle expression is associated with the stage of chronic liver disease. This could be confirmed in rat models of cirrhosis and ACLF. ACLF was induced by LPS injection in cirrhotic rats. While mincle expression and downstream signaling via FC receptor gamma, SYK, and NF-kappa-B are upregulated in the liver, they are downregulated in PBMCs of these rats. Although mincle expressed on macrophages might be beneficial for intestinal barrier integrity, it seems to contribute to inflammation and fibrosis once the intestinal barrier becomes leaky in advanced stages of chronic liver disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.01352DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358277PMC
April 2021

Short-Term Western Diet Aggravates Non-Alcoholic Fatty Liver Disease (NAFLD) With Portal Hypertension in TGR(mREN2)27 Rats.

Int J Mol Sci 2020 May 7;21(9). Epub 2020 May 7.

Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany.

Non-alcoholic fatty liver disease (NAFLD) is gaining in importance and is linked to obesity. Especially, the development of fibrosis and portal hypertension in NAFLD patients requires treatment. Transgenic TGR(mREN2)27 rats overexpressing mouse renin spontaneously develop NAFLD with portal hypertension but without obesity. This study investigated the additional role of obesity in this model on the development of portal hypertension and fibrosis. Obesity was induced in twelve-week old TGR(mREN2)27 rats after receiving Western diet (WD) for two or four weeks. Liver fibrosis was assessed using standard techniques. Hepatic expression of transforming growth factor-β1 (TGF-β1), collagen type Iα1, α-smooth muscle actin, and the macrophage markers Emr1, as well as the chemoattractant Ccl2, interleukin-1β (IL1β) and tumor necrosis factor-α (TNFα) were analyzed. Assessment of portal and systemic hemodynamics was performed using the colored microsphere technique. As expected, WD induced obesity and liver fibrosis as confirmed by Sirius Red and Oil Red O staining. The expression of the monocyte-macrophage markers, Emr1, Ccl2, IL1β and TNFα were increased during feeding of WD, indicating infiltration of macrophages into the liver, even though this increase was statistically not significant for the EGF module-containing mucin-like receptor (Emr1) mRNA expression levels. Of note, portal pressure increased with the duration of WD compared to animals that received a normal chow. Besides obesity, WD feeding increased systemic vascular resistance reflecting systemic endothelial and splanchnic vascular dysfunction. We conclude that transgenic TGR(mREN2)27 rats are a suitable model to investigate NAFLD development with liver fibrosis and portal hypertension. Tendency towards elevated expression of Emr1 is associated with macrophage activity point to a significant role of macrophages in NAFLD pathogenesis, probably due to a shift of the renin-angiotensin system towards a higher activation of the classical pathway. The hepatic injury induced by WD in TGR(mREN2)27 rats is suitable to evaluate different stages of fibrosis and portal hypertension in NAFLD with obesity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21093308DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246932PMC
May 2020

The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom.

Microbiologyopen 2020 01 13;9(1):e00954. Epub 2019 Nov 13.

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

Endophytic bacteria are known for their ability in promoting plant growth and defense against biotic and abiotic stress. However, very little is known about the microbial endophytes living in the spermosphere. Here, we isolated bacteria from the seeds of five different populations of wild cabbage (Brassica oleracea L) that grow within 15 km of each other along the Dorset coast in the UK. The seeds of each plant population contained a unique microbiome. Sequencing of the 16S rRNA genes revealed that these bacteria belong to three different phyla (Actinobacteria, Firmicutes, and Proteobacteria). Isolated endophytic bacteria were grown in monocultures or mixtures and the effects of bacterial volatile organic compounds (VOCs) on the growth and development on B. oleracea and on resistance against a insect herbivore was evaluated. Our results reveal that the VOCs emitted by the endophytic bacteria had a profound effect on plant development but only a minor effect on resistance against an herbivore of B. oleracea. Plants exposed to bacterial VOCs showed faster seed germination and seedling development. Furthermore, seed endophytic bacteria exhibited activity via volatiles against the plant pathogen F. culmorum. Hence, our results illustrate the ecological importance of the bacterial seed microbiome for host plant health and development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mbo3.954DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957406PMC
January 2020

Biological activities associated with the volatile compound 2,5-bis(1-methylethyl)-pyrazine.

FEMS Microbiol Lett 2019 02;366(3)

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB Wageningen, the Netherlands.

Pyrazines are 1,4-diazabenzene-based volatile organic compounds and known for their broad-spectrum antimicrobial activity. In the present study, we assessed the antimicrobial activity of 2,5-bis(1-methylethyl)-pyrazine, produced by Paenibacillus sp. AD87 during co-culture with Burkholderia sp. AD24. In addition, we were using transcriptional reporter assays in E. coli and mammalian cells to decipher the possible mode of action. Bacterial and mammalian luciferase reporter strains were deployed to elucidate antimicrobial and toxicological effects of 2,5-bis(1-methylethyl)-pyrazine. At high levels of exposure, 2,5-bis(1-methylethyl)-pyrazine exerted strong DNA damage response. At lower concentrations, cell-wall damage response was observed. The activity was corroborated by a general toxicity reporter assay in E. coli ΔampD, defective in peptidoglycan turnover. The maximum E. coli cell-wall stress activity was measured at a concentration close to the onset of the mammalian cytotoxicity, while other adverse outcome pathways, such as the activation of aryl hydrocarbon and estrogenic receptor, the p53 tumour suppressor and the oxidative stress-related Nrf2 transcription factor, were induced at elevated concentrations compared to the response of mammalian cells. Because of its broad-spectrum antimicrobial activity at lower concentrations and the relatively low mammalian toxicity, 2,5-bis(1-methylethyl)-pyrazine is a potential bio-based fumigant with possible applications in food industry, agriculture or logistics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnz023DOI Listing
February 2019

Growth promotion and inhibition induced by interactions of groundwater bacteria.

FEMS Microbiol Ecol 2018 11;94(11)

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

Microorganisms can produce a plethora of secondary metabolites, some acting as signaling compounds and others as suppressing agents. As yet, the potential of groundwater microbes to produce antimicrobial compounds to increase their competitiveness against other bacteria has not been examined. In this study, we developed an AlamarBlue® based high-throughput screening method that allowed for a fast and highly standardized evaluation of both growth-inhibiting and -promoting metabolites. With this technique, 149 screened bacterial isolates were grown in monocultures and in 1402 co-cultures. Co-cultivation did not increase the frequency of growth inhibition against the two tested model organisms (Staphylococcus aureus 533R4 and Escherichia coli WA321) compared to monocultures. Mainly co-cultivation of Proteobacteria induced growth inhibition of both model organisms. Only slightly increased growth promotion of S. aureus 533R4 was observed. Growth-promoting effects on E. coli WA321 were observed by supernatants from co-cultures between Bacteroidetes and Firmicutes. With the standardized screening for both growth-inhibiting and -promoting effects, this method will enable further studies to elaborate and better understand complex inter-specific interactions and networks in aquatic communities as well as in other environments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiy164DOI Listing
November 2018

Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils.

ISME J 2018 09 13;12(9):2307-2321. Epub 2018 Jun 13.

Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41396-018-0186-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092406PMC
September 2018

The effect of isabelin, a sesquiterpene lactone from Ambrosia artemisiifolia on soil microorganisms and human pathogens.

FEMS Microbiol Lett 2018 02;365(4)

Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, PO BOX 50, 6700 AB Wageningen, The Netherlands.

Ambrosia artemisiifolia L. (common ragweed) is an invasive weed, which is well known for the strong allergenic effect of its pollen as well as for its invasiveness and impact in crop fields (e.g. causing yield losses). This species produces a broad range of sesquiterpenoids. In recent years, new bioactive molecules have been discovered in this plant, e.g. isabelin, a sesquiterpene dilactone. The bioactivity of isabelin has been already demonstrated on allergy-related receptors and its inhibitory effect on seeds of various plant species. Isabelin was tested for potential antimicrobial effects by using a selection of soil-borne bacteria and fungi and three human pathogens as model organisms. For the majority of microorganisms tested, no antimicrobial activity of isabelin was observed. However, isabelin revealed strong antimicrobial activity against the Gram-positive soil bacterium Paenibacillus sp. and against the Gram-positive, multidrug-resistant Staphylococcus aureus. The observed inhibitory activity of isabelin can enlighten the importance to study similar compounds for their effect on human pathogens and on soil and rhizosphere microorganisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fny001DOI Listing
February 2018

Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer.

PLoS One 2017 17;12(8):e0179695. Epub 2017 Aug 17.

Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

There is increasing evidence showing that microbes can influence plant-insect interactions. In addition, various studies have shown that aboveground pathogens can alter the interactions between plants and insects. However, little is known about the role of soil-borne pathogens in plant-insect interactions. It is also not known how environmental conditions, that steer the performance of soil-borne pathogens, might influence these microbe-plant-insect interactions. Here, we studied effects of the soil-borne pathogen Rhizoctonia solani on aphids (Sitobion avenae) using wheat (Triticum aestivum) as a host. In a greenhouse experiment, we tested how different levels of soil organic matter (SOM) and fertilizer addition influence the interactions between plants and aphids. To examine the influence of the existing soil microbiome on the pathogen effects, we used both unsterilized field soil and sterilized field soil. In unsterilized soil with low SOM content, R. solani addition had a negative effect on aphid biomass, whereas it enhanced aphid biomass in soil with high SOM content. In sterilized soil, however, aphid biomass was enhanced by R. solani addition and by high SOM content. Plant biomass was enhanced by fertilizer addition, but only when SOM content was low, or in the absence of R. solani. We conclude that belowground pathogens influence aphid performance and that the effect of soil pathogens on aphids can be more positive in the absence of a soil microbiome. This implies that experiments studying the effect of pathogens under sterile conditions might not represent realistic interactions. Moreover, pathogen-plant-aphid interactions can be more positive for aphids under high SOM conditions. We recommend that soil conditions should be taken into account in the study of microbe-plant-insect interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179695PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560682PMC
October 2017

Exploring bacterial interspecific interactions for discovery of novel antimicrobial compounds.

Microb Biotechnol 2017 07 29;10(4):910-925. Epub 2017 May 29.

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands.

Recent studies indicated that the production of secondary metabolites by soil bacteria can be triggered by interspecific interactions. However, little is known to date about interspecific interactions between Gram-positive and Gram-negative bacteria. In this study, we aimed to understand how the interspecific interaction between the Gram-positive Paenibacillus sp. AD87 and the Gram-negative Burkholderia sp. AD24 affects the fitness, gene expression and the production of soluble and volatile secondary metabolites of both bacteria. To obtain better insight into this interaction, transcriptome and metabolome analyses were performed. Our results revealed that the interaction between the two bacteria affected their fitness, gene expression and the production of secondary metabolites. During interaction, the growth of Paenibacillus was not affected, whereas the growth of Burkholderia was inhibited at 48 and 72 h. Transcriptome analysis revealed that the interaction between Burkholderia and Paenibacillus caused significant transcriptional changes in both bacteria as compared to the monocultures. The metabolomic analysis revealed that the interaction increased the production of specific volatile and soluble antimicrobial compounds such as 2,5-bis(1-methylethyl)-pyrazine and an unknown Pederin-like compound. The pyrazine volatile compound produced by Paenibacillus was subjected to bioassays and showed strong inhibitory activity against Burkholderia and a range of plant and human pathogens. Moreover, strong additive antimicrobial effects were observed when soluble extracts from the interacting bacteria were combined with the pure 2,5-bis(1-methylethyl)-pyrazine. The results obtained in this study highlight the importance to explore bacterial interspecific interactions to discover novel secondary metabolites and to perform simultaneously metabolomics of both, soluble and volatile compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1751-7915.12735DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481530PMC
July 2017

The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria.

Trends Microbiol 2017 04 27;25(4):280-292. Epub 2016 Dec 27.

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, The Netherlands. Electronic address:

The rich diversity of secondary metabolites produced by soil bacteria has been appreciated for over a century, and advances in chemical analysis and genome sequencing continue to greatly advance our understanding of this biochemical complexity. However, we are just at the beginning of understanding the physicochemical properties of bacterial metabolites, the factors that govern their production and ecological roles. Interspecific interactions and competitor sensing are among the main biotic factors affecting the production of bacterial secondary metabolites. Many soil bacteria produce both volatile and soluble compounds. In contrast to soluble compounds, volatile organic compounds can diffuse easily through air- and gas-filled pores in the soil and likely play an important role in long-distance microbial interactions. In this review we provide an overview of the most important soluble and volatile classes of secondary metabolites produced by soil bacteria, their ecological roles, and their possible synergistic effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2016.12.002DOI Listing
April 2017

Validation of the AlamarBlue® Assay as a Fast Screening Method to Determine the Antimicrobial Activity of Botanical Extracts.

PLoS One 2016 29;11(12):e0169090. Epub 2016 Dec 29.

Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain.

Plant compounds are a potential source of new antimicrobial molecules against a variety of infections. Plant extracts suppose complex phytochemical libraries that may be used for the first stages of the screening process for antimicrobials. However, their large variability and complexity require fast and inexpensive methods that allow a rapid and adequate screening for antimicrobial activity against a variety of bacteria and fungi. In this study, a multi-well plate assay using the AlamarBlue® fluorescent dye was applied to screen for antimicrobial activity of several botanical extracts and the data were correlated with microbial colony forming units (CFU). This correlation was performed for three pathogenic model microorganisms: Escherichia coli (Gram negative bacteria), Staphylococcus aureus (Gram positive bacteria) and for the yeast-like fungi Candida albicans. A total of ten plant extracts from different Mediterranean plants, including several Cistus and Hibiscus species, were successfully tested. HPLC-DAD-ESI-MS/MS analysis was utilized for the characterization of the extracts in order to establish structure-activity correlations. The results show that extracts enriched in ellagitannins and flavonols are promising antibacterial agents against both Gram positive and Gram negative bacteria. In contrast, phenolic acids, anthocyanidins and flavonols may be related to the observed antifungal activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169090PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5199036PMC
July 2017

Fungus-associated bacteriome in charge of their host behavior.

Fungal Genet Biol 2017 05 30;102:38-48. Epub 2016 Jul 30.

Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands. Electronic address:

Bacterial-fungal interactions are widespread in nature and there is a growing number of studies reporting distinct fungus-associated bacteria. However, little is known so far about how shifts in the fungus-associated bacteriome will affect the fungal host's lifestyle. In the present study, we describe for the first time the bacterial community associated with the saprotrophic fungus Mucor hiemalis, commonly found in soil and rhizosphere. Two broad-spectrum antibiotics that strongly altered the bacterial community associated with the fungus were applied. Our results revealed that the antibiotic treatment did not significantly reduce the amount of bacteria associated to the fungus but rather changed the community composition by shifting from initially dominating Alpha-Proteobacteria to dominance of Gamma-Proteobacteria. A novel approach was applied for the isolation of fungal-associated bacteria which also revealed differences between bacterial isolates obtained from the original and the antibiotic-treated M. hiemalis. The shift in the composition of the fungal-associated bacterial community led to significantly reduced fungal growth, changes in fungal morphology, behavior and secondary-metabolites production. Furthermore, our results showed that the antibiotic-treated isolate was more attractive and susceptible to mycophagous bacteria as compared to the original isolate. Overall, our study highlights the importance of the fungus-associated bacteriome for the host's lifestyle and interactions and indicate that isolation with antibacterials is not sufficient to eradicate the associated bacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2016.07.011DOI Listing
May 2017

Volatiles in Inter-Specific Bacterial Interactions.

Front Microbiol 2015 18;6:1412. Epub 2015 Dec 18.

Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands.

The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2015.01412DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683202PMC
January 2016

The effect of phylogenetically different bacteria on the fitness of Pseudomonas fluorescens in sand microcosms.

PLoS One 2015 16;10(3):e0119838. Epub 2015 Mar 16.

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, the Netherlands.

In most environments many microorganisms live in close vicinity and can interact in various ways. Recent studies suggest that bacteria are able to sense and respond to the presence of neighbouring bacteria in the environment and alter their response accordingly. This ability might be an important strategy in complex habitats such as soils, with great implications for shaping the microbial community structure. Here, we used a sand microcosm approach to investigate how Pseudomonas fluorescens Pf0-1 responds to the presence of monocultures or mixtures of two phylogenetically different bacteria, a Gram-negative (Pedobacter sp. V48) and a Gram-positive (Bacillus sp. V102) under two nutrient conditions. Results revealed that under both nutrient poor and nutrient rich conditions confrontation with the Gram-positive Bacillus sp. V102 strain led to significant lower cell numbers of Pseudomonas fluorescens Pf0-1, whereas confrontation with the Gram-negative Pedobacter sp. V48 strain did not affect the growth of Pseudomonas fluorescens Pf0-1. However, when Pseudomonas fluorescens Pf0-1 was confronted with the mixture of both strains, no significant effect on the growth of Pseudomonas fluorescens Pf0-1 was observed. Quantitative real-time PCR data showed up-regulation of genes involved in the production of a broad-spectrum antibiotic in Pseudomonas fluorescens Pf0-1 when confronted with Pedobacter sp. V48, but not in the presence of Bacillus sp. V102. The results provide evidence that the performance of bacteria in soil depends strongly on the identity of neighbouring bacteria and that inter-specific interactions are an important factor in determining microbial community structure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119838PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361692PMC
February 2016

Impact of interspecific interactions on antimicrobial activity among soil bacteria.

Front Microbiol 2014 28;5:567. Epub 2014 Oct 28.

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands.

Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798) indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression) were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2014.00567DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211544PMC
November 2014

No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.

PLoS One 2011 16;6(11):e27266. Epub 2011 Nov 16.

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

Background: Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures.

Methodology And Principal Findings: We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either.

Significance: Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027266PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217935PMC
March 2012