Publications by authors named "Oktavia Hendrawati"

5 Publications

  • Page 1 of 1

In vitro regeneration of wild chervil (Anthriscus sylvestris L.).

In Vitro Cell Dev Biol Plant 2012 Jun 25;48(3):355-361. Epub 2011 Oct 25.

Anthriscus sylvestris (L.) Hoffm. (Apiaceae) is a common wild plant that accumulates the lignan deoxypodophyllotoxin. Deoxypodophyllotoxin can be hydroxylated at the C-7 position in recombinant organisms yielding podophyllotoxin, which is used as a semi-synthetic precursor for the anticancer drugs, etoposide phosphate and teniposide. As in vitro regeneration of A. sylvestris has not yet been reported, development of a regeneration protocol for A. sylvestris would be useful as a micropropagation tool and for metabolic engineering of the plant. Calli were induced from hypocotyl explants and transferred to shoot induction medium containing zeatin riboside. Regenerated shoots were obtained within 6 mo and were transferred onto growth regulator-free root induction medium containing 1% sucrose. Regenerated plants transferred to soil and acclimatized in a greenhouse. Plants were transferred to the field with a 100% survival rate. Regenerated plants flowered and were fully fertile. This is the first report of complete regeneration of A. sylvestris via shoot organogenesis from callus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11627-011-9410-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375414PMC
June 2012

Identification of lignans and related compounds in Anthriscus sylvestris by LC-ESI-MS/MS and LC-SPE-NMR.

Phytochemistry 2011 Dec 31;72(17):2172-9. Epub 2011 Aug 31.

Department of Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands.

The aryltetralin lignan deoxypodophyllotoxin is much more widespread in the plant kingdom than podophyllotoxin. The latter serves as a starting compound for the production of cytostatic drugs like etoposide. A better insight into the occurrence of deoxypodophyllotoxin combined with detailed knowledge of its biosynthestic pathway(s) may help to develop alternative sources for podophyllotoxin. Using HPLC combined with electrospray tandem mass spectrometry and NMR spectroscopy techniques, we found nine lignans and five related structures in roots of Anthriscus sylvestris (L.) Hoffm. (Apiaceae), a common wild plant in temperate regions of the world. Podophyllotoxone, deoxypodophyllotoxin, yatein, anhydropodorhizol, 1-(3'-methoxy-4',5'-methylenedioxyphenyl)1-ξ-methoxy-2-propene, and 2-butenoic acid, 2-methyl-4-[[(2Z)-2-methyl-1-oxo-2-buten-1-yl]oxy]-, (2E)-3-(7-methoxy-1,3-benzodioxol-5-yl)-2-propen-1-yl ester, (2Z)- were the major compounds. α-Peltatin, podophyllotoxin, β-peltatin, isopicropodophyllone, β-peltatin-a-methylether, (Z)-2-angeloyloxymethyl-2-butenoic acid, anthriscinol methylether, and anthriscrusin were present in lower concentrations. α-Peltatin, β-peltatin, isopicropodophyllone, podophyllotoxone, and β-peltatin-a-methylether have not been previously reported to be present in A. sylvestris. Based on our findings we propose a hypothetical biosynthetic pathway of aryltetralin lignans in A. sylvestris.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2011.08.009DOI Listing
December 2011

Podophyllotoxin and deoxypodophyllotoxin in Juniperus bermudiana and 12 other Juniperus species: optimization of extraction, method validation, and quantification.

J Agric Food Chem 2011 Aug 15;59(15):8101-7. Epub 2011 Jul 15.

Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Antenne Scientifique Universitaire de Chartres (ASUC), Université d'Orléans, Chartres, France.

The lignans podophyllotoxin and deoxypodophyllotoxin are secondary metabolites with potent pharmaceutical applications in cancer therapy. However, the supply of podophyllotoxin from its current natural source, Podophyllum hexandrum, is becoming increasingly problematic, and alternative sources are therefore urgently needed. So far, podophyllotoxin and deoxypodophyllotoxin have been found in some Juniperus species, although at low levels in most cases. Moreover, extraction protocols deserve optimization. This study aimed at developing and validating an efficient extraction protocol of podophyllotoxin and deoxypodophyllotoxin from Juniperus species and applying it to 13 Juniperus species, among which some had never been previously analyzed. Juniperus bermudiana was used for the development and validation of an extraction protocol for podophyllotoxin and deoxypodophyllotoxin allowing extraction yields of up to 22.6 mg/g DW of podophyllotoxin and 4.4 mg/g DW deoxypodophyllotoxin, the highest values found in leaf extract of Juniperus. The optimized extraction protocol and HPLC separation from DAD or MS detections were established and validated to investigate podophyllotoxin and deoxypodophyllotoxin contents in aerial parts of 12 other Juniperus species. This allowed either higher yields to be obtained in some species reported to contain these two compounds or the occurrence of these compounds in some other species to be reported for the first time. This efficient protocol allows effective extraction of podophyllotoxin and deoxypodophyllotoxin from aerial parts of Juniperus species, which could therefore constitute interesting alternative sources of these valuable metabolites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf201410pDOI Listing
August 2011

Seasonal variations in the deoxypodophyllotoxin content and yield of Anthriscus sylvestris L. (Hoffm.) grown in the field and under controlled conditions.

J Agric Food Chem 2011 Aug 18;59(15):8132-9. Epub 2011 Jul 18.

Department of Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands.

Deoxypodophyllotoxin (DPT) is the main lignan in Anthriscus sylvestris . For this study two sets of experiments with 16 plants and seeds, collected from a wide geographical range, were carried out. The DPT content in roots was significantly lower (p < 0.05) when the plants were cultivated in a non-native environment. For field-grown plants the highest DPT content was found in March (second year): 0.15% w/w (dry weight) in roots; 0.03% w/w in aerial parts. For plants grown in the climate room, the highest concentration (0.14% w/w) was observed in April (second year) in the roots and in July (first year) in the aerial parts (0.05% w/w). For the isolation of DPT, roots are the most suitable part. The best harvest times are March (second year) for outdoor plants and April (second year) for indoor plants when height content and adequate biomass give the optimal DPT yield.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf200177qDOI Listing
August 2011

PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily.

Microbiology (Reading) 2011 Jul 3;157(Pt 7):2042-2055. Epub 2011 Mar 3.

Department of Pharmaceutical Biology, University of Groningen, 9713AV Groningen, The Netherlands.

The Pseudomonas aeruginosa PAO1 genome has at least two genes, pvdQ and quiP, encoding acylhomoserine lactone (AHL) acylases. Two additional genes, pa1893 and pa0305, have been predicted to encode penicillin acylase proteins, but have not been characterized. Initial studies on a pa0305 transposon insertion mutant suggested that the gene is not related to the AHL growth phenotype of P. aeruginosa. The close similarity (67 %) of pa0305 to HacB, an AHL acylase of Pseudomonas syringae, prompted us to investigate whether the PA0305 protein might also function as an AHL acylase. The pa0305 gene has been cloned and the protein (PA0305) has been overproduced, purified and subjected to functional characterization. Analysis of the purified protein showed that, like β-lactam acylases, PA0305 undergoes post-translational processing resulting in α- and β-subunits, with the catalytic serine as the first amino acid of the β-subunit, strongly suggesting that PA0305 is a member of the N-terminal nucleophile hydrolase superfamily. Using a biosensor assay, PA0305his was shown to degrade AHLs with acyl side chains ranging in length from 6 to 14 carbons. Kinetics studies using N-octanoyl-L-homoserine lactone (C(8)-HSL) and N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) as substrates showed that the enzyme has a robust activity towards these two AHLs, with apparent K(cat)/K(m) values of 0.14 × 10(4) M(-1) s(-1) towards C(8)-HSL and 7.8 × 10(4) M(-1 )s(-1) towards 3-oxo-C(12)-HSL. Overexpression of the pa0305 gene in P. aeruginosa showed significant reductions in both accumulation of 3-oxo-C(12)-HSL and expression of virulence factors. A mutant P. aeruginosa strain with a deleted pa0305 gene showed a slightly increased capacity to kill Caenorhabditis elegans compared with the P. aeruginosa PAO1 wild-type strain and the PAO1 strain carrying a plasmid overexpressing pa0305. The harmful effects of the Δpa0305 strain on the animals were most visible at 5 days post-exposure and the mortality rate of the animals fed on the Δpa0305 strain was faster than for the animals fed on either the wild-type strain or the strain overexpressing pa0305. In conclusion, the pa0305 gene encodes an efficient acylase with activity towards long-chain homoserine lactones, including 3-oxo-C(12)-HSL, the natural quorum sensing signal molecule in P. aeruginosa, and we propose to name this acylase HacB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.043935-0DOI Listing
July 2011
-->