Publications by authors named "Odelia Pisanty"

5 Publications

  • Page 1 of 1

A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport.

Nat Commun 2018 10 11;9(1):4204. Epub 2018 Oct 11.

School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.

Transport of signaling molecules is of major importance for regulating plant growth, development, and responses to the environment. A prime example is the spatial-distribution of auxin, which is regulated via transporters to govern developmental patterning. A critical limitation in our ability to identify transporters by forward genetic screens is their potential functional redundancy. Here, we overcome part of this functional redundancy via a transportome, multi-targeted forward-genetic screen using artificial-microRNAs (amiRNAs). We generate a library of 3000 plant lines expressing 1777 amiRNAs, designed to target closely homologous genes within subclades of transporter families and identify, genotype and quantitatively phenotype, 80 lines showing reproducible shoot growth phenotypes. Within this population, we discover and characterize a strong redundant role for the unstudied ABCB6 and ABCB20 genes in auxin transport and response. The unique multi-targeted lines generated in this study could serve as a genetic resource that is expected to reveal additional transporters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06410-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182007PMC
October 2018

Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques.

J Exp Bot 2017 04;68(9):2245-2257

School of Chemistry, The Sackler Faculty of Exact Sciences, and.

As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6-10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erx106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447889PMC
April 2017

Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors.

Curr Biol 2017 Feb 19;27(3):437-444. Epub 2017 Jan 19.

Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Electronic address:

The Aux/IAA proteins are auxin-sensitive repressors that mediate diverse physiological and developmental processes in plants [1, 2]. There are 29 Aux/IAA genes in Arabidopsis that exhibit unique but partially overlapping patterns of expression [3]. Although some studies have suggested that individual Aux/IAA genes have specialized function, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes [4]. Furthermore, with a few exceptions, our knowledge of the factors that regulate Aux/IAA expression is limited [1, 5]. We hypothesize that transcriptional control of Aux/IAA genes plays a central role in the establishment of the auxin-signaling pathways that regulate organogenesis, growth, and environmental response. Here, we describe a screen for transcription factors (TFs) that regulate the Aux/IAA genes. We identify TFs from 38 families, including 26 members of the DREB/CBF family. Several DREB/CBF TFs directly promote transcription of the IAA5 and IAA19 genes in response to abiotic stress. Recessive mutations in these IAA genes result in decreased tolerance to stress conditions, demonstrating a role for auxin in abiotic stress. Our results demonstrate that stress pathways interact with the auxin gene regulatory network (GRN) through transcription of the Aux/IAA genes. We propose that the Aux/IAA genes function as hubs that integrate genetic and environmental information to achieve the appropriate developmental or physiological outcome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2016.12.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296222PMC
February 2017

The Arabidopsis NPF3 protein is a GA transporter.

Nat Commun 2016 May 3;7:11486. Epub 2016 May 3.

Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel.

Gibberellins (GAs) are plant hormones that promote a wide range of developmental processes. While GA signalling is well understood, little is known about how GA is transported or how GA distribution is regulated. Here we utilize fluorescently labelled GAs (GA-Fl) to screen for Arabidopsis mutants deficient in GA transport. We show that the NPF3 transporter efficiently transports GA across cell membranes in vitro and GA-Fl in vivo. NPF3 is expressed in root endodermis and repressed by GA. NPF3 is targeted to the plasma membrane and subject to rapid BFA-dependent recycling. We show that abscisic acid (ABA), an antagonist of GA, is also transported by NPF3 in vitro. ABA promotes NPF3 expression and GA-Fl uptake in plants. On the basis of these results, we propose that GA distribution and activity in Arabidopsis is partly regulated by NPF3 acting as an influx carrier and that GA-ABA interaction may occur at the level of transport.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms11486DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857387PMC
May 2016

Crystal structure of the three FK506 binding protein domains of wheat FKBP73: evidence for a unique wFK73_2 domain.

J Struct Funct Genomics 2010 Jun 20;11(2):113-23. Epub 2010 Mar 20.

Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.

Here we describe the crystal structure of the N-terminal domain of the FK506-binding protein (FKBP) from wheat (wFKBP73), which is the first structure presenting three FK domains (wFK73_1, wFK73_2 and wFK73_3). The crystal model includes wFK73_2 and wFK73_3 domains and only part of the wFK73_1 domain. The wFK73_1 domain is responsible for binding FK506 and for peptidyl prolyl cis/trans isomerase (PPIase) activity, while the wFK73_2 and wFK73_3 domains lack these activities. A structure-based sequence comparison demonstrated that the absence of a large enough hydrophobic pocket important for PPIase activity, and of the conserved residues necessary for drug binding in the wFK73_2 and wFK73_3 domains explains the lack of these activities in these domains. Sequence and structural comparison between the three wFKBP73 domains suggest that the wFK73_2 domain is the most divergent. A structural comparison of the FK domains of wFKBP73 with other FKBPs containing more than one FK domain, revealed that while the overall architecture of each of the three FK domains displays a typical FKBP fold, their relative arrangement in space is unique and may have important functional implications. We suggest that the existence of FKBPs with three FK domains offers additional interactive options for these plant proteins enlarging the overall regulatory functions of these proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10969-010-9085-8DOI Listing
June 2010
-->