Publications by authors named "Nurul Aqmar Mohamad Nor Hazalin"

4 Publications

  • Page 1 of 1

Virgin Coconut Oil-Induced Neuroprotection in Lipopolysaccharide-Challenged Rats is Mediated, in Part, Through Cholinergic, Anti-Oxidative and Anti-Inflammatory Pathways.

J Diet Suppl 2020 Oct 14:1-27. Epub 2020 Oct 14.

Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.

Neuroinflammation is associated with neuronal cell death and could lead to chronic neurodegeneration. This study investigated the neuroprotective potential of virgin coconut oil (VCO) against lipopolysaccharide (LPS)-induced cytotoxicity of neuroblastoma SK-N-SH cells. The findings were validated using Wistar rats, which were fed with 1-10 g/kg VCO for 31 days, exposed to LPS (0.25 mg/kg) and subjected to the Morris Water Maze Test. Brain homogenate was subjected to biochemical analyses and gene expression studies. α-Tocopherol (α-T; 150 mg/kg) served as the positive control. VCO (100 µg/mL) significantly ( < 0.01) improved SK-N-SH viability (+57%) and inhibited reactive oxygen species (-31%) in the presence of LPS. VCO (especially 10 g/kg) also significantly ( < 0.05) enhanced spatial memory of LPS-challenged rats. Brain homogenate of VCO-fed rats was presented with increased acetylcholine (+33%) and reduced acetylcholinesterase (-43%). The upregulated antioxidants may have reduced neuroinflammation [malondialdehyde (-51%), nitric oxide (-49%), (-64%) and (-63%)] through upregulation of IL-10 (+30%) and downregulation of IL-1β (-65%) and Interferon-γ (-25%). There was also reduced expression of (-77%). VCO-induced neuroprotection, which was comparable to α-T, could be mediated, in part, through inflammatory, cholinergic and amyloidogenic pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/19390211.2020.1830223DOI Listing
October 2020

Physical characterisation and stability study of formulated Chromolaena odorata gel.

Curr Drug Deliv 2021 Apr 18. Epub 2021 Apr 18.

Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia.

Aim: Formulating topical products for skin delivery has always been a challenge for pharmaceutical scientists to fulfil good formulation criteria. Despite the challenges, gel-based drug delivery offers some advantages such that it is non-invasive, painless, avoidance of the first-pass metabolism and has satisfactory patient compliance.

Objectives: In this study, Chromolaena odorata gel and quercetin gel (bioactive flavonoid compound) were successfully formulated and compared with placebo and conventional wound aid gel. The chromatographic profilling was conducted to screen the presence of phytoconstituents. Subsequently, all formulated gels were subjected to physical characteristic and stability study.

Methods: Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) of C.odorata methanolic leaves extract shows a distinct compound separation at retention time 8.4min to 34.8 min at 254nm. All gels were characterised by evaluating their rheological properties including storage modulus, loss modulus and plastic viscosity. Besides, texture analysis was performed to measure the gels' firmness, consistency, cohesiveness, and viscosity index.

Results: From the observation, C. odorata gel demonstrated better spreadability as compared to the other gels, which acquired less work and favourable to be applied onto the skin. Moreover, C. odorata gel showed no changes in organoleptic properties and proven to be stable after 30 days of accelerated stability study at 40°C ± 2°C with relative humidity (RH) of 75%± 5%.

Conclusion: C. odorata gel has shown to be stable, reflecting the combination of materials used in the formulation, which did not degrade throughout the study. This work suggests the potential of this gel as a vehicle to deliver the active ingredients of C. odorata to the skin, which can be further explored as a topical application in antimicrobial wound management or other skin diseases study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201818666210419114809DOI Listing
April 2021

TRPM4 inhibition improves spatial memory impairment and hippocampal long-term potentiation deficit in chronic cerebral hypoperfused rats.

Behav Brain Res 2020 09 30;393:112781. Epub 2020 Jun 30.

Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia. Electronic address:

Chronic cerebral hypoperfusion (CCH) been well characterized as a common pathological status contributing to neurodegenerative diseases such as Alzheimer's disease and vascular dementia. CCH is an important factor that leads to cognitive impairment, but the underlying neurobiological mechanism is poorly understood and no effective treatment is available. Recently, transient receptor potential melastatin 4 (TRPM4) cation channel has been identified as an important molecular element in focal cerebral ischemia. Over activation of the channel is a major molecular mechanism of oncotic cell death. However, the role of TRPM4 in CCH that propagates global brain hypoxia have not been explored. Therefore, the present study is designed to investigate the effect of TRPM4 inhibition on the cognitive functions of the rats following CCH via permanent bilateral occlusion of common carotid arteries (PBOCCA) model. In this model, treatment with siRNA suppressed TRPM4 expression at both the mRNA and protein levels and improved cognitive deficits of the CCH rats without affecting their motor function. Furthermore, treatment with siRNA rescued the LTP impairment in CCH-induced rats. Consistent with the restored of LTP, western blot analysis revealed that siRNA treatment prevented the reduction of synaptic proteins, including calcium/calmodulin-dependent kinase II alpha (CaMKIIα) and brain-derived neurotrophic factor (BDNF) in brain regions of CCH rats. The present findings provide a novel role of TRPM4 in restricting cognitive functions in CCH and suggest inhibiting TRPM4 may represent a promising therapeutic strategy in targeting ion channels to prevent the progression of cognitive deficits induced by ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2020.112781DOI Listing
September 2020

Induction of apoptosis against cancer cell lines by four ascomycetes (endophytes) from Malaysian rainforest.

Phytomedicine 2012 May 6;19(7):609-17. Epub 2012 Mar 6.

Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.

Endophytic fungi have been shown to be a promising source of biologically active natural products. In the present study, extracts of four endophytic fungi isolated from plants of the National Park, Pahang were evaluated for their cytotoxic activity and the nature of their active compounds determined. Those extracts exhibiting activity with IC(50) values less than 17 μg/ml against HCT116, MCF-7 and K562 cell lines were shown to induce apoptosis in these cell lines. Molecular analysis, based on sequences of the rDNA internal transcribed spacers ITS1 and ITS4, revealed all four endophytic fungi to be ascomycetes: three sordariomycetes and a dothideomycete. Six known compounds, cytochalasin J, dechlorogriseofulvin, demethylharzianic-acid, griseofulvin, harzianic acid and 2-hexylidene-3-methyl-succinic acid were identified from a rapid dereplication technique for fungal metabolites using an in-house UV library. The results from the present study suggest the potential of endophytic fungi as cytotoxic agents, and there is an indication that the isolates contain bioactive compounds that mainly kill cancer cells by apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2012.01.007DOI Listing
May 2012